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Abstract—In past years, artificial intelligence related services
and applications have boomed, which require high computation,
high bandwidth and low latency. Edge computing is regarded as
an appropriate solution for them, especially video analytics. In
this paper, we study the multi-server multi-user heterogeneous
video analytics offloading problem, where users select appropri-
ate edge servers and then offload their raw video data to the
servers for essential analytics. To deal with the cooperation and
conflicts among users and get a stable situation where each user
has no incentive to change the offloading decision unilaterally,
we formulate the video analytics offloading problem as a multi-
player game. Based on the goal of minimizing the overall delay,
we design the potential optimal server selection strategy and then
propose a game theory-based algorithm, through which the Nash
equilibrium can be reached. Furthermore, we analyze its near-
optimal performance via rigorous proof. Finally, extensive trace-
driven experiments show that our method improves the overall
delay by 48% on average, compared with other algorithms.

I. INTRODUCTION
With the advent of smart devices and a host of new

applications, network traffic is growing rapidly. Due to the
high transmission delay and heavy loads on the backhaul
links, traditional centralized network architectures cannot sat-
isfy the requirements of users [1]. Edge computing is a
new emerging paradigm, and it allows the data produced
by end devices to be processed at the edge of networks,
instead of sending it to the cloud or data center along long
routes. Meanwhile, the artificial intelligence (AI) services and
applications based on deep learning have boomed in recent
years. Among them, video analytics has been envisioned as
a killer application for edge computing [2, 3]. Most of the
video analytics applications running on edge servers process
video data to detect some specific objects, including missing
children, abandoned luggage, causing-trouble vehicles, etc. In
general, video analytics tasks collect numerous high-definition
videos and require high computation, high bandwidth and low
latency. Thus, edge computing is regarded as an appropriate
solution to satisfy these strict requirements.

In the edge computing environment, there exist multiple
edge servers with diverse capacities (e.g., computation ca-
pacity and memory), and they are physically distributed in
different locations, which causes different data transmission
delay. A large number of users offload their video data to
the edge servers for video analytics services, as shown in
Fig. 1. Some video data can be divided into smaller units
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Fig. 1. Multi-server Multi-user Video Analytics Task Offloading.
based on the length and configuration (i.e., frame rate and
resolution) [4, 5], and then the video units are separately
analyzed through video analytics services. It is challenging
for users to select appropriate edge servers and offload their
video data (or video units) to them for computation. Edge
servers have limited computation capacity and transmission
bandwidth, and improper offloading decisions may overload
some edge servers and cause the wastage of CPU cycles. For
example, if too much video data is allocated to the same edge
server, the processing time will be significantly prolonged as
a result of the server overloading. On the other hand, if too
little video data is allocated to an edge server, it will result in
the low utilization of computational resources on the server.

From the user’s point of view, the objective is to minimize
the overall delay of computation and transmission. Each user
needs to determine where to offload the video data (e.g.,
one edge server or multiple edge servers), how to allocate
video units among edge servers, and so on. Usually, the
edge network resources are limited, and each user interacts
with others to get the stable allocation of network resources
and achieve the goal of minimizing the computation and
transmission delay. At this point, we apply the method of
game theory (GT) to improve the utilization of resources. It
helps to analyze the interactions among multiple independent
and self-interested players, and then design a system where
no player has an incentive to deviate unilaterally [6].

In this paper, we study the multi-server multi-user hetero-
geneous video analytics task offloading problem, where users
select appropriate edge servers and offload their video data to
the servers for video analytics. We first present the approach of
dividing the video data into smaller units based on the length
and frame rate. Then we formulate both of the computation
and communication models and represent the overall delay
when users offload their video units to the selected servers
for computation. In order to achieve the goal of minimizing
the overall delay and obtaining a stable situation where no user
has an incentive to change its offloading decision unilaterally,
we formulate the multi-server multi-user heterogeneous video



analytics task offloading problem as a multi-player game. To
tackle the game and reach the Nash equilibrium, we study the
general distributed scenario where each user’s video units can
be separately offloaded to multiple servers. Based on the GT-
based potential optimal server selection algorithm (Alg. 2) and
the notion of cut-off value, the key factor of minority game,
we propose the GT-based video unit allocation algorithm
(Alg. 1). Via rigorous proofs, we analyze its near-optimal
performance and prove that the Nash Equilibrium (NE) can
be reached. Furthermore, extensive trace-driven experiments
using the videos from the AI City Datasets 2019 [7] and
the object detector YOLOv3 [8] confirm the performance of
our proposed algorithm. Compared with other algorithms, our
method improves the overall delay by 48% on average.

II. RELATED WORK

We summarize the prior studies by the following categories
and highlight their shortcomings compared with our work.

Task Offloading at Edges: Gao et al. [9] developed a
joint design of task partitioning and offloading for a DNN-
task enabled MEC network that consisted of a single server
and multiple mobile devices. Yan et al. [10] proposed the
optimal task offloading policy and resource allocation that
minimized the weighted sum of energy consumption and task
execution time under the task-dependency model. Wu et al.
[11] studied a blockchain scenario where edge computing and
cloud computing collaborated toward secure task offloading.
These works focus on the task offloading problem at edges,
but fail to consider the video analytics applications.

Video Analytics at Edges: NoScope [12] was designed
based on a difference detector that highlighted temporal
differences across frames to speed up video analysis in
edge computing environments. Vantage [13] was presented
as a live-streaming upload solution, which used the selective
quality enhancing retransmission instead of real-time frames
to improve the quality of experience of time-shifted viewers.
Ren et al. [14] presented an algorithm for multi-user video
compression and offloading in edge computing which mini-
mized the latency in local, edge and cloud compression. These
works study the video analytics configuration adaptation and
task offloading at edges. However, almost no work applies GT-
based methods to tackle them for the stable network situation.

Game Theory for Edge Provisioning: Hu et al. [15]
formulated the heterogeneous task offloading problem as the
minority game, and the players ending up in the minority won.
Zheng et al. [16] proposed a performance metric to evaluate
user’s quality of experience, and a QoE-oriented resource
allocation problem was modeled as a local cooperation game.
Zhan et al. [17] designed a decentralized offloading game in
which each user decided the portion of its task offloaded to the
edge server. However, these works fail to consider the method
of dividing the video data into smaller units upon length and
frame rate for video analytics task offloading at edges.

III. PROBLEM FORMULATION
In this section, we present the system model and formulate

the considered multi-server multi-user heterogeneous video
analytics task offloading problem as a multi-player game.

A. System Model
Edge Network: At the network edge, we consider N edge

users, denoted as N = {1, 2, ..., N}. The edge servers consist
of one master server and M slave servers, denoted as M =
{1, 2, ...,M}. The master edge server is the entry point of
task offloading from edge users, and the slave edge servers
process the video analytics tasks. Video analytics applications
are deployed on the edge servers, and users offload their video
analytics tasks to them for computation, as shown in Fig. 1.

Video Segmentation: Based on the length and configura-
tion (i.e., frame rate and resolution), some video data can
be divided into smaller units, and then each of the video
units is analyzed through the video analytics applications. For
example, in object detection, the task is to find some object
(e.g., a lost wallet) in the offloaded video data. The length of
the video is 600 seconds, and the frame rate is 30 frames per
second (fps). We can divide the video data into smaller units,
of which the length and frame rate are 2 seconds and 5 fps,
respectively. After that, we can apply the object detector to
the 600s·30fps

2s·5fps = 1800 video units in parallel.
More generally, each user n has a video analytics task Tn =

〈ln, fn, rn〉, where the length, frame rate and resolution are
denoted as ln, fn and rn, respectively. In some video analytics
applications, the video data is captured from the surveillance
cameras [4], and the video resolution is fixed. Besides, the size
of the video frame input into convolutional neural networks,
which is used for video analysis, is usually set to be constant.
Thus, in this paper, we assume that the resolutions of all users’
video data are the same constant R (i.e., ∀n ∈ N , rn = R),
and we divide the video data into smaller units upon the length
and frame rate. Then we can calculate the number of video
units for the user n as sn = lnfn/LuFu, where Lu is set
to a common divisor of all users’ video lengths, and Fu is
a common divisor of all users’ video frame rates. It is worth
mentioning that we can always obtain the proper values of Lu
and Fu (e.g., Lu equals 1 second and Fu equals 1 fps).

Task Offloading: When user n offloads its video units to
edge servers for computation, the task offloading decisions
of user n are denoted as xn = [xn,1, xn,2, ..., xn,M ]T, where
xn,m represents the number of video units offloaded to edge
server m by user n. For each edge server m ∈M, xn,m is
a non-negative integer, and we have

∑
m∈M xn,m = sn.

Computation Model: Similar to the previous work [4],
videos are divided into smaller units, and the computation
requirement of each video unit is denoted as Cu [CPU cycles].
Furthermore, we use virtual parallel processing [18] to support
the processing of multiple tasks. Then the computation delay
on the edge server m can be calculated as

τm =
∑

n∈N
xn,mCu/Capm, (1)

where we use Capm [CPU cycles per second] to represent the
computation capacity of the edge server m. Thus, we calculate
the overall computation delay for user n as

Dcompn = maxm∈M,xn,m 6=0{τm}. (2)
From the above equations, we observe that when user n

offloads all of its video units to only one edge server m, the



overall computation delay just depends on the computation
delay on that server. On the contrary, when the video units
are offloaded to multiple edge servers, the overall computation
delay is the maximum among the computation delays on those
servers. Therefore, it is challenging for each user to make and
adjust its offloading decision corresponding to other users’ so
that the overall computation delay can be minimized.

Communication Model: We calculate user n’s uplink data
rate rn,0 [bits per second] of video offloading to master edge
server, according to the Shannon-Hartley formula [18], as

rn,0 = Wlog2(1 + PnHn,0/σ
2), (3)

where W represents the channel bandwidth and Pn represents
user n’s transmission power, which can be determined by
some power control algorithms [18]. Besides, Hn,0 denotes
the channel gain between user n and master edge server, and
σ2 is the background noise variance.

Similar to the existing work [12–14], the time overhead
for the edge servers to send back the computation outcome
is neglected, due to the fact that in most of video analytics
applications, the size of computation outcome is much smaller
than the offloaded video data size. Thus, when user n offloads
its sn video units to the appropriate slave edge servers through
master edge server, the transmission delay is calculated as

Dcommn = snDu/rn,0, (4)
where Du [bits] represents the data size of each video unit.
B. Game Formulation

We formulate the multi-server multi-user heterogeneous
video analytics task offloading problem as a multi-player
game, which is denoted as G = 〈N ,S,U〉, where the user
set N is regarded as the player set. The set of all players’
strategy spaces S is denoted as {S1,S2, ...,SN}, where
Sn represents the strategy space of player n. One decision
xn = [xn,1, xn,2, ..., xn,M ]T can also denote a task offloading
strategy for each player n, and Sn is the union of all strategies
that user n can choose. We use x = (x1,x2, ...,xN ) to
represent the task offloading strategies of all players, and
x−n = (x1, ...,xn−1,xn+1, ...,xN ) denotes all of other play-
ers’ offloading strategies except player n. All of players’ util-
ity functions are denoted as a set U = {Un(xn,x−n)}n∈N .
Based on the overall delay of computation and transmission,
we construct the utility function for each player n in G as

Un(xn,x−n) = 1/(Dcompn + En[Dcommn ]) (5a)
= 1/(maxm∈M,xn,m 6=0{τm + ϕ}), (5b)

where we use ϕ = En[Dcommn ] to represent the expected value
of transmission delay for all players [15]. It is noted that the
overall delay of computation and transmission for each user
can be minimized if the user maximizes its utility function.

It is challenging for each player to select the optimal
strategy to maximize its utility function and win the game,
due to the fact that the payoff of each player depends on
not only its own strategy but also others’. To deal with the
cooperation and conflicts among players and get a stable
situation where each player has no incentive to change the
task offloading strategy unilaterally, we need to design the
algorithm to achieve the Nash equilibrium defined as follows.
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Fig. 2. Three main procedures of Alg. 1.

Definition 1. (Nash Equilibrium) For each player n, the
strategy set x∗ = (x∗1,x

∗
2, ...,x

∗
N ) constitutes a Nash equilib-

rium in the game model G if and only if the individual utility
function for each player n cannot be improved by changing
its own task offloading strategy unilaterally, i.e.,
∀n ∈N , ∀xn ∈ Sn, Un(x∗n,x

∗
−n) ≥ Un(xn,x

∗
−n). (6)

The Nash equilibrium has a self-stability property such
that users at the equilibrium can obtain mutually satisfactory
solutions. Through achieving the Nash equilibrium, we can get
a stable situation where each user has no incentive to change
its video analytics task offloading decision unilaterally.

IV. GAME THEORY-BASED ALGORITHM DESIGN
In this section, we investigate the general distributed sce-

nario where each user’s video units can be separately offloaded
to multiple servers. We first introduce the concept of minority
game with a key factor, cut-off value. After that, we design the
GT-based video unit allocation algorithm (Alg. 1), which in-
vokes the potential optimal server selection algorithm (Alg. 2)
to tackle the considered problem in distributed scenarios.
A. Preliminary of Minority Game

As we know, the minority game [6], which is also referred
to as the El Faro Bar problem, is a representative resource
allocation problem. We first introduce the concept of cut-off
value, the key factor of the minority game, which explains how
players determine the strategies. For example, in a simplified
version of the El Faro Bar problem, 100 people decide to go to
the town bar for entertainment, and they have 2 identical bars
A and B as candidates. The capacity of each bar is limited,
such as the limited room space. Thus, it will be wiser for
the 100 people to choose the bar with fewer people because
they can enjoy a higher quality service and a more elegant
environment. Then the cut-off value for the bar A or B in the
problem is calculated as 100/2 = 50. If the number of people
in the bar A is smaller than the cut-off value, the people in
A win the minority game. Otherwise, the people in B win.

Then we define the cut-off value of our considered problem
in Definition 2 and determine its value in Theorem 1.
Definition 2. (Cut-off Value) The cut-off value φm denotes
the threshold for the number of video units offloaded to each
edge server m, such that the maximal delay of computation
and communication among all edge servers can be minimized.
All cut-off values form the set Φ = {φ1, φ2, ..., φM}, where∑
m∈M φm =

∑
n∈N sn is satisfied.

Theorem 1. In order to minimize the maximal overall delay
of computation and communication among all edge users, for
each edge server m ∈M, we have

φm=(Capm
∑

n∈N
sn)/

∑
j∈M

Capj . (7)



Algorithm 1: GT-based Video Unit Allocation
Input: video unit number sn, computing capacity

Capm and transmission delay ϕ;
1 for each edge user n ∈N do
2 Publish its number of video unit sn;
3 Collect the video unit numbers of other users;
4 Calculate Φ← {φ1, φ2, ..., φM} following Eq. (7);
5 for each server m ∈M do
6 x′n,m ←

⌊
snφm/

∑
j∈M φj

⌋
;

7 Offload x′n,m video units to server m;
8 for each edge user n ∈N do
9 Collect information of other users’ allocation;

10 ∀m ∈M, λm ← λm + snew;
11 rn = sn −

∑
m∈M x′n,m;

12 for each remaining video unit u do
13 Offload u to its potential optimal server

obtained through Alg. 2;
14 Publish information of video unit allocation;

Proof. See Appendix A.
According to Definition 2, when the number of video units

offloaded to edge server m is smaller than φm, there must
be at least one other edge server, of which the computation
and communication delay is higher. On the contrary, when the
number of video units offloaded to m is significantly larger
than φm, it may raise the overall delay. Therefore, to minimize
the maximal delay of computation and communication among
all edge servers, the number of video units offloaded to the
each edge server m should be close to the cut-off value φm.

B. GT-based Algorithm Design
Note that the cut-off values calculated in Eq. (7) might

not be an integer, and we cannot directly use the cut-off
values as the number of video units offloaded to the servers,
which poses a challenge. In this subsection, we propose
a GT-based video unit allocation algorithm (Alg. 1) based
on the potential optimal server selection method (Alg. 2).
Through the algorithms, the Nash equilibrium can be achieved,
and users have no incentive to change their task offloading
decisions unilaterally. We present the three main procedures
of Alg. 1, which are shown in Fig. 2, as follows.

Initial Video Unit Allocation (Lines 2-7): Based on the
cut-off value set Φ = {φ1, φ2, ..., φM}, we get the number of
video units that user n initially allocates to edge server m as

x′n,m =
⌊
snφm/

∑
j∈M

φj

⌋
, (8)

where we use a rounding integer to approximate the initial
video unit allocation x′n,m. Notably more video units will be
initially allocated to the servers with larger cut-off values.

Information Collection and Update (Lines 9-10): Users
collect the information of other users’ offloading decisions and
learn the resource utilization of edge servers. For each edge
server m, the current video unit number λm on it is updated as

λm = λm + snew, (9)
where snew represents the number of video units newly
offloaded to server m, and it depends on users’ video unit al-
location. Through the information collection and update, users
make preparations for the remaining video unit allocation.

Algorithm 2: Potential Optimal Server Selection
Input: remaining video unit number rn, computing

capacity Capm and transmission delay ϕ;
1 for each edge user n ∈N do
2 Collect the resource utilization λm of edge servers;
3 for each remaining video unit u of user n do
4 Calculate potential optimal server m∗ upon

Eqs. (11) and (12);
5 λm∗ ← λm∗ + 1;
6 Offload u to potential optimal server m∗;

Remaining Video Unit Allocation (Lines 11-14): Since
we use the rounding integer to approximate the initial video
unit allocation, there exists a gap between the initial video
unit allocation and the theoretically optimal allocation. Thus,
for each user n, we get the remaining video unit number as

rn = sn −
∑

m∈M
x′n,m. (10)

For the remaining video units, Alg. 2 is called, and users of-
fload them to potential optimal servers defined in Definition 3.
Definition 3. (Potential Optimal Server) Before each re-
maining video unit for user n is offloaded, we calculate the
potential delay Γn,m for each server m as

Γn,m = λmCu/Capm + ϕ︸ ︷︷ ︸
current delay

+Cu/Capm︸ ︷︷ ︸
added delay

, (11)

where λm denotes the number of video units on the server m
currently. For each remaining video unit of user n, the edge
server m is the potential optimal server if and only if the
potential delay of server m∗ is the least among all servers, i.e.,

m∗ = arg minj∈M{Γn,j}. (12)
As shown in the potential optimal server selection algorithm

(Alg. 2), each user first collects the resource utilization (i.e.,
the current video unit number λm) of each server m. With
the information collected, the potential optimal server m∗ for
each remaining video unit u is calculated upon Eqs. (11) and
(12); after that, λm∗ is updated in line 5. Finally, the remaining
video unit u is offloaded to the potential optimal server m∗.
C. Algorithm Performance Analysis

In this subsection, we show that the NE can be achieved by
the proposed algorithms in Theorem 2, and then we analyze
their near-to-optimal performance in Theorem 3.
Theorem 2. After the video units of all users are offloaded to
the edge servers for video analytics through Algorithm 1, the
Nash equilibrium is achieved, and no user has an incentive
to change its task offloading decision unilaterally.
Proof. See Appendix B.
Theorem 3. The gap between the practical overall delay D
derived by Algorithm 1 and the theoretical optimum D∗ is
bounded by Cu/minm{Capm}, where Cu is the computation
requirement of each video unit and minm{Capm} is the
minimal computing capacity among all edge servers.
Proof. See Appendix C.

In practice, when the computing capacity of edge servers
is about 10 GHz and Cu is set to about 106 CPU cycles, the
gap between D and D∗ can be bounded within 1 ms, which
shows the superior performance of our design.
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V. EXPERIMENTS AND RESULT ANALYSIS
In this section, we evaluate the performance of our design

through extensive trace-driven experiments with various set-
tings, and compare it against some other existing approaches.
A. Experiment Settings

Similar to previous studies [15, 19], we consider an edge
computing system containing 24 users and 6 edge servers.
According to the experimental measurements in [20], the
computing capacity Capm follows the Gaussian distribution
N(5, 4) GHz, and the variance of computing capacities varies
in our experiments. Following the existing work [19], the
channel bandwidth W is set to 20 MHz, the background noise
σ is set to 50 dBm, and each user holds the transmission power
Pn∼N(1, 0.1)W. We set the channel gain Hn,0 = (distn,0)µ,
where distn,0 is the distance between user n and master edge
server, and the path loss factor µ is set to 4.

For task offloading, we use the videos derived from the AI
City Datasets 2019 [7] for video analytics upon the object
detector YOLOv3 [8]. The video length ln varies from 10
seconds to 5 minutes, and the video frame rate fn is assigned
from the set {2, 3, 5, 10, 30} fps as referred in [4]. We set
Lu to 1 s and set Fu to 1 fps in our experiments. To properly
set the value of Cu, we use YOLOv3 to process an image
with the size of 1920×1080 on NVIDIA Jetson TX2 shown
in Fig. 3(a). This image can be regarded as a video unit in
our evaluation, and based on the experimental measurement
result, Cu is set to 2.25× 106 CPU cycles.

We refer to the GT-based video unit allocation algorithm
in distributed scenario as Distributed Task Offloading Scheme
(DTOS). We compare our designs with the following schemes:
• Computation Capacity Prior Scheme (CCPS): Users give

priority to the computation capacity when making the
decisions in the task offloading game.

• Transmission Delay Prior Scheme (TDPS): Users give
priority to the transmission delay when making the
decisions in the task offloading game.

• Random Scheme (RS): Users randomly select the edge
servers for task offloading in the game.

• Theoretically OPTimal scheme (TOPT): TOPT calcu-
lates the theoretically optimal overall delay D∗, which
probably cannot be achieved in practice.

B. Experiment Results
Result for Nash Equilibrium: We first study the result

for the achieved Nash equilibrium after running the GT-based
video unit allocation algorithm. As shown in Fig. 3(b), we
arbitrarily select four video units among all users and show
the overall delays of the different edge servers to which the
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video units are offloaded. For video unit 0, which is from user
0, we observer that when it is on edge server 0, the overall
delay is about 5.642 seconds. However, when video unit 0
is offloaded to other servers, the overall delay will become
higher, and it is the same for the other video units. Therefore,
it is demonstrated in Fig. 3(b) that after running the proposed
algorithm, all users have no incentives to change their deci-
sions unilaterally, and the Nash equilibrium is achieved.

Comparisons in Overall Delay: As shown in Fig. 4, we
compare our designs with other baseline approaches with
respect to the overall delay of transmission and computation.
When the number of video units increases, it will cost more
time for servers to run the computing tasks, and the overall de-
lay gets higher, as shown in Fig. 4(a). It can also be observed
that our design DTOS has a better performance in overall
delay than other approaches. Then, we vary the variance of
server capacity from 4 to 20, and find that the overall delays
derived from CCPS show an increasing trend in Fig. 4(b). This
might be due to the fact that more video data will be offloaded
to the servers with high computing capacities, resulting in the
high overall delay. In comparison, our design DTOS can get
a steady overall delay in different settings. Furthermore, we
compare DTOS with the theoretically optimal scheme TOPT
in Fig. 4, and we find that the overall delay derived from
DTOS is slightly more than that from TOPT. Therefore, our
design can obtain the near-to-optimal solution.

Comparisons in Variance of Delays: As shown in Fig. 5,
we investigate the differences in the delays of all edge servers,
and calculate the delay variances with varying video data
amount and server capacity. It is worth mentioning that in
our experiments, the transmission delay seems relatively small
when compared to the computation delay, i.e., the transmission
delay is less important, and it conforms to the real world.
Hence, in terms of both overall delay and variance of delays,
CCPS performs better than TDPS. We observe that in various
settings, the delay variances obtained from our designs are
very close to 0, and we can learn that the gap between the
maximum and minimum delay of all servers is very small,
indicating our design can minimize the overall delay for users.



VI. CONCLUSION

To minimize the overall delay and obtain a stable situation
where no user has an incentive to change its offloading de-
cision unilaterally, we formulate the multi-server multi-user
heterogeneous video analytics task offloading problem as a
multi-player game. Through the proposed GT-based video unit
allocation and potential optimal server selection algorithms,
users select appropriate edge servers and offload their video
data to them for video analytics. Via rigorous proof, our design
achieves the near-optimal performance, and Nash equilibrium
can be reached. Extensive trace-driven experiments show the
improvement of our design compared with other algorithms.

APPENDIX
A. Proof of Theorem 1
Proof. Similar to the El Faro Bar problem, the maximal over-
all delay among all users is minimized when all servers share
the equal delay of computation and communication, i.e.,

τ1 + ϕ = τ2 + ϕ = ... = τM + ϕ = D∗, (13)
where the constant D∗ is the theoretic optimal overall delay.
According to Eq. (1), for each cut-off value φm, we have

φmCu/Capm + ϕ = D∗. (14)
By moving the terms in Eq. (14) and adding

∑
m∈M to both

sides, based on Definition 2, we get
D∗=(

∑
n∈N

snCu+
∑

m∈M
ϕCapm)/

∑
m∈M

Capm. (15)

By plugging Eq. (15) into (14), Thm. 1 is proved.
B. Proof of Theorem 2
Proof. To prove that NE is achieved, we only need to prove
that the delay of computation and communication for any
video unit u will not be reduced if we move it to another
server from the potential optimal server m∗. Notably, there
are two cases for the video unit u on server m∗: (a) Video
unit u is the last one offloaded to server m∗. (b) Video unit u
is not the last one offloaded to server m∗. For case (a), based
on the definition of the potential optimal server, we easily get
that the delay of computation and communication for u does
not exceed the delay on any other server. For case (b), we
denote the last video unit offloaded to server m∗ as u0. Since
all the video units share the same computation requirement
Cu, the delay of computation and communication for u will
not decrease if it is moved to another server, similar to u0 in
case (a). Therefore, Thm. 2 is proved.
C. Proof of Theorem 3
Proof. Through Alg. 1, the video units of all edge users are
offloaded to the appropriate edge servers for video analytics,
and we have the practical overall delay as

D = maxm∈M{τm + ϕ}. (16)
The practical overall delay D is the maximal delay of com-
putation and communication among all of the edge servers,
and we let m1 denote the server of which the delay is D.
Besides, we let m2 denote the server of which the delay of
computation and communication is minimal, and we set

D′ = τm2 + ϕ. (17)
Since the cut-off value calculated in Eq. (7) might not be an
integer, it cannot be directly utilized as the number of video
units offloaded to servers. Thus it is certain that the number of
video units offloaded to server m1 is not smaller than cut-off

value φm1
, and the number of video units offloaded to server

m2 does not exceed φm2 . Then we have D′ ≤ D∗ ≤ D.
Based on Thm. 2 and the idea in Alg. 1, for each video

unit on the edge server m1, if it is transferred to the other
server m2, the delay of computation and transmission will
not decrease, i.e., D ≤ D′ + Cu/Capm2

. Thus, we have
D−D∗≤D−D′≤Cu/Capm2

≤Cu/minm∈M{Capm}, (18)
and Thm. 3 is proved.
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