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Abstract—Crowdsourcing enables a paradigm to conduct the
manual annotation and the analytics by those recruited workers,
with their rewards relevant to the quality of the results. Existing
dispatchers fail to capture the resource-quality trade-off for video
analytics, since the configurations supported by various workers
are different, and the workers’ availability is essentially dynamic.
To determine the most suitable configurations as well as workers
for video analytics, we formulate a non-linear mixed program in
a long-term scope, maximizing the profit for the crowdsourcing
platform. Based on previous results under various configurations
and workers, we design an algorithm via a series of subproblems
to decide the configurations adaptively upon the prediction of the
worker rewards. Such prediction is based on volatile multi-armed
bandit to capture the workers’ availability and stochastic changes
on resource uses. Via rigorous proof, the regret is ensured upon
the Lyapunov optimization and the bandit, measuring the gap
between the online decisions and the offline optimum. Extensive
trace-driven experiments show that our algorithm improves the
platform profit by 37%, compared with other algorithms.

I. INTRODUCTION

The mobile crowdsourcing [1–5] has become an increas-
ingly promising paradigm, which leverages the resource of
the workers, recruited from mobile users, to conduct various
crowdsourcing jobs, including manual annotations [6], image
labelling [7] and further analytics [8], with the rewards highly
depending on the quality of the results. For the video analytics
with manual annotations or image labelling, the configurations
need to be determined carefully, since the accuracy of object
detection [9] relies on them, including frame rates, resolutions,
etc. As a result, the dispatcher of the crowdsourcing needs to
choose the most suitable configurations with maximum profit.

Unfortunately, optimally determining the configurations for
videos over recruited workers, as in Fig. 1, with their availabil-
ity changing over time, faces multiple challenges as follows:

First and foremost, the configurations supported by various
recruited workers are quite different. Limited to the computing
capacity and the hardware [10], some workers fail to support
the configurations with heavy resource involved. Furthermore,
after deploying a specific video analytics model for a worker,
the configurations supported by such a model [11–13] are
often limited, since the video analytics models often have their
own input formats [14–16]. And the fixed formats restrict the
inputs of the video analytics, e.g., requiring those videos with
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Fig. 1. Illustration of Mobile Crowdsourcing for Video Analytics

a fixed range of resolutions. When deciding the configurations
and the workers for the video analytics, these relationships
should be carefully considered, in case the desired configura-
tions fail to be supported on the workers, especially when the
availability of workers is changing over time dynamically.

Second, the resource-quality trade-off for the videos essen-
tially affects the rewards and it needs to be determined before
the execution. Although the configurations to obtain the high-
quality results for video analytics are desired, they often incur
heavy computation on workers with more resource consumed
[17]. Meanwhile, the workers request a higher reward from
the crowdsourcing platform due to their contributions [18].
To balance the profit and the quality of results, the platform
has to decide the resource-quality trade-off. Unfortunately, the
trade-off must be conducted before the execution, because it
is part of the input [19]. Furthermore, the trade-off is highly
relevant to videos’ inner contents. It is improper to adopt the
previous one directly for a new video, although the feedback
from the previous executions [20] under various configurations
potentially helps the trade-off decisions for video analytics.

Third, the resources consumed on workers in terms of both
transmission and computation are uncertain. As shown in our
case studies later, although all settings for the execution of
the video analytics are fixed, the energy consumed by devices
changes over time [21]. Similarly, even if all settings are fixed
for the transmission, the energy consumed changes over time
as well [22]. Such stochastic inner changes on the resource
consumption hampers the workers to estimate the rewards and
also hampers the platform to determine the configurations and
workers in advance for video analytics with maximum profit.
Although previous observable inputs actually help to capture
the changes of those stochastic inputs, the availability of the



(a) Detect with Low Resolution (b) Detect with Low Frame Rate
Fig. 2. Inappropriate Configurations for Detecting Objects
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Fig. 3. Trade-off under Various Resolutions and Frame Rates

workers dynamically changing over time further makes it hard
to estimate the resource consumptions on workers.

Existing works fall insufficient for tackling these previous
challenges. Some works [23–25] have considered the configu-
rations for videos, but they fail to optimize the crowdsourcing
profit. Other works [26–30] have studied the worker selec-
tions, but they fail to decide the configurations. The rest [31–
35] have discussed the resource changes, but they fail to treat
them with guarantee under dynamic workers’ availability.

In this paper, to overcome previous challenges for crowd-
sourcing, we formulate a non-linear mixed program with the
objective of maximum profit for the platform in a long-term
scope, capturing the dynamic availability of recruited workers.
Essentially, the profit depends on the quality of the analytics
results, and the energy consumption on both transmission and
computation is considered. Furthermore, in order to ensure the
quality, a guarantee is also promised by the platform.

We then design an online algorithm via a series of subprob-
lems solved over time. These subproblems take the previous
analytics results under various configurations and workers into
consideration, and are willing to dispatch those video analytics
tasks to the workers with minimum resource consumption, and
to configure the most suitable settings. Such subproblems are
based on the prediction regarding the resource consumption on
recruited workers. In order to capture the stochastic resource
usage, also catering to the dynamic workers’ availability, the
volatile multi-armed bandit is used for the prediction. By using
these predictive inputs, these subproblems further balance the
cumulative violation regarding the platform guarantee and the
profit incurred within current time slot. Via rigorous proofs,
by using our designed algorithm with a series of subproblems
solved upon the prediction, the regret is ensured based on the
Lyapunov optimization and the bandit. Such regret measures
the gap between the results from our online algorithm and the
offline optimum. Furthermore, the guarantee promised by the
crowdsourcing platform for video analytics is ensured.

Extensive trace-driven experiments with the videos derived
from the AI City Datasets 2019 [36] confirm the superiority of
our online dispatcher for video analytics upon YOLOv3 [11],
compared with other algorithms. The profit increases 37.9%
on average with 0.2‰ violation on promised guarantee.
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Fig. 4. Changes on Computation (Top) and Transmission (Bottom)

II. SYSTEM MODEL

A. Preliminary Case Studies for Video Crowdsourcing
Video Configurations: As illustrated in Fig. 2(a), when the

background is similar to objects and the objects are small,
detecting them precisely often requires a higher resolution
[14]. As shown in Fig. 3, with the growth of the resolutions,
the accuracy increases and the detection time also grows
dramatically. As illustrated in Fig. 2(b) [16], when the objects
are moving fast in the video, detecting them precisely from the
videos requires a higher frame rate. As shown in Fig. 3, with
the growth of the frame rates, the accuracy improves, but the
detection time increases as well [19]. Thus, for different video
analytics, the configuration should be adapted to its contents
for better detection accuracy. However, more detection time
and corresponding resources have to be then involved.

Resource on Workers: As illustrated in Fig. 4, the energy
consumption incurred by both computation and transmission
changes over time [21, 22] on the devices. Furthermore, for
different computation workloads, the overall energy consump-
tions also vary. Similarly, for different video analytics under
various configurations on workers, the workloads incurred are
different, and the resource consumption also changes over
time, even if the configurations are fixed. Such stochastic
inner changes on the resource usage hamper us from precisely
estimation on resource consumption, and further hamper the
platform from precise estimation on the profit [18].

Opportunity and Challenges: Although adaptively prepar-
ing the best configurations for videos improves the quality of
analytics, the rewards for the workers depend on consumed
resources. Futher, the stochastic changes on resources hamper
us from precisely prediction on the consumption, which also
hamper the platform from profit estimation.
B. System Settings and Models

We summarize the major notations used in Table I.
Mobile Crowdsourcing: We consider the crowdsourcing

system, with the overall time scope being divided into many
time slots, denoted as T = {1, ..., T}. The platform receives
the video analytics from the requestors and dispatches the
tasks split from videos to recruited workers. Within each time
slot, some new devices may be recruited as the workers and
the old ones may terminate due to low volume of battery. We
further divide each time slot into multiple epochs J t, and the
available worker set in epoch j, slot t is denoted as N t

j .
Video Analytics: For each time slot, the platform needs

to determine the worker selection and configuration decisions
for M t tasks, the set of which are Mt = {st1, st2, ..., stMt}.



TABLE I
MAJOR NOTATIONS USED FOR MODEL

Symbols Descriptions
N t

j Set of workers in epoch j time slot t
Mt {st1, st2, ..., stMt}, set of video analytics tasks in time slot t
Kt

m {stm,k|k = 1, 2, ...,Kt
m}, set of subtasks in task stm

at Average analytics accuracy for all subtasks in time slot t
etn Energy consumption on worker n’s device in time slot t
Ut Crowdsourcing profit in time slot t
F t
m Original frame rate of to-be-analyzed video in task stm

Amin Accuracy guarantee promised by crowdsourcing platform
xt
m,k,n Whether to allocate subtask stm,k to worker n
f t
m,k Frame rate selected for subtask stm,k

Following the ideas in [37–39], each video analytics task is
relatively large and can be divided into multiple subtasks
(e.g., several frames for each subtask, which is suitable for
the execution on mobile devices). Let Kt

m be the number of
subtasks in task stm, and the subtask set is Kt

m = {stm,k|k =
1, 2, ...,Kt

m}, where stm,k is the k-th subtask of task stm.
Analytics on Workers: Considering the limited capacity of

mobile devices [10], each worker’s mobile device is equipped
with one CNN model for analytical simplicity, of which the
input resolution is ri. Nevertheless, our proposed model can
also handle multiple CNNs on each device. Once a worker is
selected, the resolution is determined as the input resolution of
the CNN model on the worker’s mobile device. We assume
that the original resolution of each to-be-analyzed video is
high, and it can be reduced to the selected resolution by
simple down-sampling [40, 41]. We use xtm,k,n to represent
whether a subtask stm,k is allocated to worker n, and f tm,k
represents the frame rate selected for subtask stm,k. Therefore,
in each time slot t, the mobile crowdsourcing platform needs
to determine the worker selection and frame rate adaptation
for each subtask to maximize the crowdsourcing profit subject
to the time-averaged accuracy guarantee in the long term.

Accuracy of Analytics: Profiling the relationship between
the configurations and the accuracy is non-trivial, since the
configuration is multi-dimensional, including resolution and
frame rate. Different decision variables can affect the accuracy
in different ways. Based on existing prior studies [9, 14, 38]
and the performance measurements obtained from our pre-
liminary case studies, we have two important observations: i)
the relationship between accuracy and resolution/frame rate
can be formulated as a concave function; ii) frame resolution
adaptation and frame sampling rate impact accuracy indepen-
dently. Based on the above two observations, the accuracy of
subtask stm,k in epoch j, slot t can be calculated as

atm,k = εtm(
∑|Nt

j |

n=1
xtm,k,nrn)φtm(f tm,k),

where the concave functions εtm(r) and φtm(f) represent the
accuracies with respect to resolution r and frame rate f for
task stm, respectively, and

∑
n x

t
m,k,nrn is the selected frame

resolution for task stm. Therefore, it is easy to get the average
analytics accuracy for all subtasks in time slot t as

at =
∑Mt

m=1

∑Kt
m

k=1
atm,k/

∑Mt

m=1

∑Kt
m

k=1
.

Consumptions of Analytics: For the workers, the battery
becomes one of the most concerns because it is inconvenient to

recharge the devices. The energy consumption mainly consists
of two parts: transmission energy and processing energy.

The transmission energy consumption is caused by worker’s
downloading video data from the mobile crowdsourcing plat-
form, which is proportional to the size of downloaded video
data [14]. Following the idea in [42], the data size of a video
frame with resolution r can be calculated as αr2 bits, where α
is a constant. Thus, we get the energy consumption for worker
n’s downloading video data in time slot t as

ed,tn =
∑Mt

m=1

∑Kt
m

k=1
γtm,nα(xtm,k,nrn)2f tm,k,

where γtm,n denotes the energy consumption for downloading
one bit of the input for video analytics on worker n’s device.

The processing energy consumption is resulted from local
video frame processing on worker’s device. We use µtm,n as
the energy consumption for processing one frame on worker
n’s device [43], then the processing energy consumption on
worker n’s mobile device in time slot t is calculated as

ec,tn =
∑Mt

m=1

∑Kt
m

k=1
µtm,nx

t
m,k,nf

t
m,k.

The overall energy consumption on worker n in time slot
t is etn = ed,tn + ec,tn , where γtm,n and µtm,n are stochastic.

Profit of Crowdsourcing: For a task requestor, the accu-
racy of video analytics is of considerable importance. Similar
to existing works [38, 44], we use a concave function Gtm(a)
to model the revenue function, with respect to the accuracy a
for task stm. Thus, the crowdsourcing revenue received from
requestors in time slot t can be calculated as

It =
∑Mt

m=1

∑Kt
m

k=1
Gtm(atm,k).

Since the energy consumption plays an important role in
the mobile crowdsourcing, the payment to crowd workers
mainly covers the execution cost of energy consumption. Let
ωn denote the payment, for consuming each unit of energy,
priced by worker n [18]. Thus, we calculate the total monetary
cost of crowdsourcing platform in time slot t as

Ot =
∑|J t|

j=1

∑|Nt
j |

n=1
ωne

t
n,

The profit (a.k.a utility) of the crowdsourcing platform can
be calculated as the revenue received from the task requestors
minus the payment to the crowd workers [18] involved. Thus,
the crowdsourcing profit in time slot t is U t = It −Ot.

C. Problem Formulation
For crowdsourcing platform, the objective is to maximize

the profit under the long-term accuracy constraint. Based on
the above models, our considered problem is formulated as

P1 : max
x,f

lim
T→+∞

1

T

∑T

t=0
U t (1a)

s.t. xtm,k,n={0,1},∀t, ∀m∈Mt,∀k∈Kt
m,∀n∈∪jN

t
j , (1b)∑|J t|

j=1

∑|Nt
j |

n=1
xtm,k,n=1,∀t, ∀m∈Mt,∀k∈Kt

m, (1c)

1 ≤ f tm,k ≤ F tm,∀t,∀m∈M
t,∀k∈Kt

m, (1d)

lim
T→+∞

1

T

∑T

t=0
at ≥ Amin. (1e)
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Constraints (1b) and (1c) ensure that each subtask is allocated
to one and only one worker per time slot t. Constraint (1d)
ensures that the selected frame rate cannot exceed F tm, the
original frame rate of to-be-analyzed video in task stm. The
last constraint (1e) requires that the time-averaged analytics
accuracy should satisfy the accuracy guarantee Amin.

The difficulty in obtaining the optimal solution to problem
P1 is the lack of future information. In order to optimally solve
P1, near future information about varying video content and its
corresponding best configuration is needed, which is hard to
predict precisely in advance. In addition, P1 is a mixed integer
nonlinear programming problem, and it is very difficult to
tackle even if the future information can be known a priori. An
online approach is needed to efficiently determine the worker
selection and configuration adaptation for the video analytics
tasks on the fly without foreseeing the future.

III. ONLINE ALGORITHM DESIGN

To decouple the long-term constraint, we use the Lyapunov
optimization to convert the original time-averaged problem
P1 into a series of subproblems per slot, as shown in Fig. 5.
Upon invoking Algorithm 2 per time slot using multi-armed
bandit, a series of subproblems regarding the video analytics
over workers are actually controlled in Algorithm 1.

A. Lyapunov-based Online Optimization
The major difficulty of directly solving P1 is that the long-

term analysis accuracy constraint (1e) couples the worker
selection and frame rate decisions across different time slots.
To address this difficulty, we apply the Lyapunov optimization
and define a virtual accuracy deficit queue to guide the
decisions, which follows the long-term analysis accuracy con-
straint. Specifically, we assume that the initial queue backlog
q(0) is 0, and the queue length evolves as follows:

q(t+ 1) = [q(t) +Amin − at]+, (2)

where [·]+ denotes max{·, 0}, and queue backlog q(t) in-
dicates the deviation of current accuracy from the accuracy
constraint in time slot t. In order to get a higher profit,
if the platform attempts to simply reduce the expenditure
Ot by lowering the frame rate, the queue backlog q(t) will
increase unboundedly, resulting in the unacceptable accuracy.
To keep the accuracy queue stable, we define the quadratic
Lyapunov function as L(q(t)) = 1

2 (q(t))2, which represents
the congestion level in accuracy deficit queue. When the value
of L(q(t)) is small, it implies that the queue backlog is also
small and the accuracy queue has strong stability. In order to
keep the queue stability and enforce the accuracy constraint by
persistently pushing the Lyapunov function to a lower value,
we introduce the one-slot Lyapunov drift:

∆(q(t)) = E[L(q(t+ 1))− L(q(t))|q(t)], (3)

Algorithm 1: Lyapunov Online aLgorithm (LOL)

Input: q(0)← 0, Amin, ωn, F tm, Gtm, ∀t
1 for t = 0 to T do
2 Profile accuracy model functions εtm and φtm, ∀m;
3 for j = 1 to |J t| do
4 Lt

m ← Set of subtasks left in stm, ∀m;
5 for Subtask stm,k in Lt

m, ∀m do
6 Prepare ztm,k() with pending inputs <µ, γ>;
7 Call Algorithm 2 and obtain ztm,k;

8 Calculate at and q(t+ 1)← [q(t) +Amin − at]+;

which represents the expected change in the Lyapunov func-
tion over one time slot when q(t) is given. We have

∆(q(t)) =
1

2
E[q2(t+ 1)− q2(t)|q(t)] (4a)

≤ 1

2
E[(q(t) +Amin − at)2 − q2(t)|q(t)] (4b)

=
1

2
(Amin − at)2 + q(t)E[(Amin − at)|q(t)] (4c)

≤ B + q(t)E[(Amin − at)|q(t)], (4d)

where B = 1
2 (Amin−amin)2 is a constant value, and amin =

mint∈T {at} represents the lowest average accuracy in all time
slots. The previous inequality comes from the Eq. (2).

We incorporate the accuracy queue stability into the opti-
mized objective function of crowdsourcing profit and define
the Lyapunov drift-plus-penalty term as

∆(q(t))− V · E[U t|q(t)], (5)
where we use the positive parameter V to adjust the tradeoff
between analysis accuracy improvement and crowdsourcing
profit maximization. Plugging (4d) into (5), we have

∆(q(t))− V · E[U t|q(t)] ≤
B + q(t) · E[Amin − at|q(t)]− V · E[U t|q(t)].

(6)

Decoupling: Rather than directly minimizing the Lyapunov
drift-plus-penalty term (5) in each slot, we learn from the min-
drift-plus-penalty algorithm [45] in Lyapunov optimization
framework and attempt to minimizing the upper bound for
the Lyapunov drift-plus-penalty term in each time slot t, i.e.,

P2 : max
x,f

q(t) · at + V · U t (7a)

s.t. (1b),(1c),(1d). (7b)

Notice that solving P2 requires only the currently available
inputs. Considering the additional term q(t) · at, the crowd-
sourcing system takes into account the analysis accuracy in
the current time slot. When the value of q(t) is large, it
implies that minimizing the accuracy deficit is more critical.
The accuracy queue is maintained without knowing future
information. It guides the worker selection and frame rate
adaptation to follow the long-term accuracy constraint, thereby
enabling online decision making. The optimized objective
function in P2, i.e.,

∑Mt

m=1

∑Kt
m

k=1H
t(m, k), is

Mt∑
m=1

Kt
m∑

k=1

q(t)atm,k∑Mt

m=1

∑Kt
m

k=1

+V [Gtm(atm,k)−
|J t|∑
j=1

|Nt
j |∑

n=1

Cm,k,n], (8)



whereCm,k,n=ωn(µtm,nx
t
m,k,nf

t
m,k+γ

t
m,nα(xtm,k,nrn)

2f tm,k).
Eq. (8) implies that when the worker selection is fixed, we
can determine f tm,k and maximize the value of Ht(m, k)
for each subtask stm,k independently. In other words, we
add up the maximized values of Ht(m, k) for each sub-
task stm,k to obtain the maximum of objective function in
problem P2. Based on the above insight, we define the set
F t
m,k = {f tm,k|∂Ht(m, k)/∂f tm,k = 0}, which means that

the first-order derivative of Ht(m, k) with respect to f tm,k in
F t
m,k equals 0. When the worker selection is fixed, we get

the optimal frame rate decision for each subtask stm,k as

f tm,k = arg max
ft
m,k∈F

t
m,k∪{1,F t

m}
Ht(m, k). (9)

The crowdsourcing platform has to learn the optimal worker
selection and frame rate adaptation on the fly. We then define
a function ztm,k to denote the value of Ht(m, k) when the
subtask stm,k is allocated to worker n and the frame rate is
set to f tm,k. Thus, we have the following definition:

ztm,k = q(t)εtm(rn)φtm(f tm,k)/
∑Mt

m=1

∑Kt
m

k=1

+V [Gtm(atm,k)−ωn(µtm,nf
t
m,k+Cdnγ

t
m,nα(rn)2f tm,k)].

(10)

According to Eq. (10), we notice that ztm,k(n, f tm,k) relies
on the values of the energy consumption rates µtm,n and γtm,n.

Therefore, the Algorithm 1 prepares such function for the
volatile multi-armed bandit, as shown in line 6. The function
clarifies the form in terms of these pending inputs, and the
volatile multi-armed bandit uses its maintained inputs to make
the decisions. After receiving the feedback from the volatile
multi-armed bandit, Algorithm 1 updates the queue backlog
for next time slot, as shown in line 8 and decoupling.

B. Dispatch upon Volatile Multi-armed Bandit

Besides the fact that γtm,n and µtm,n are stochastic, the vary-
ing set of candidate workers also poses a big challenge when
learning the optimal worker selection and frame rate adap-
tation (i.e., the solution to P2). The crowdsourcing platform
needs to restart the learning process when some worker quits
or joins. This learning strategy is inefficient because it simply
restarts the learning process without reusing what has been
learned. Although some workers may quit or join the available
worker set, the information of other workers still remain the
same. Thus, we need to propose a learning algorithm which
effectively reuses the already learned information.

In order to efficiently learn the optimal worker in a varying
worker set, we adopt the volatile MAB framework [46], where
workers may unexpectedly quit or join with unknown lifespan.
We define the concept of the epoch as an interval in which
candidate worker set is invariant. We let J t to represent the
total number of epochs in each time slot t, which is unknown
in advance. When allocating the subtasks of task stm, the
lifespan for each worker n is denoted as [utm,n, v

t
m,n] with

1≤utm,n≤vtm,n≤Kt
m, which indicates that worker n is present

from the subtask utm,n through the subtask vtm,n. Assume that
each worker only joins once during each task. If a worker joins
for the second time, it will be treated as a new worker.

Algorithm 2: Dispatch upon Volatile MAB

Input: F tm, Amin, ωn, Gtm, ∀t
1 Remove stm,k out of Lt

m;
2 if ∃ New Worker n̄ ∈N t

j then
3 utm,n̄ = Kt

m − |L
t
m|;

4 Send stm,k to n̄, observe µ̃tm,n̄, γ̃tm,n̄;
5 µ̄tm,n̄ ← µ̃tm,n̄, γ̄tm,n̄ ← γ̃tm,n̄, θtm,n̄ ← 1;

6 else

7 n̄, f̄ ← argmax{ztm,k(µ̄tm,n,γ̄
t
m,n)+

√
2 lnut

m,n

θtm,n
};

8 Send stm,k to worker n̄, observe µ̃tm,n̄, γ̃tm,n̄;

9 µ̄tm,n̄ ←
µ̄t
m,n̄θ

t
m,n̄+µ̃t

m,n̄

θtm,n̄+1
, γ̄tm,n̄ ←

γ̄t
m,n̄θ

t
m,n̄+γ̃t

m,n̄

θtm,n̄+1
;

10 θtm,n̄ ← θtm,n̄ + 1;

Output: ztm,k(µ̄tm,n̄,γ̄
t
m,n̄)

Algorithm 2 dispatches the video subtasks upon the volatile
multi-armed bandit, which leverages the bandit to maintain an
upper confidence bound on the empirical estimation of ztm,k
for each worker. It updates the estimation of all candidate
workers as more subtasks have been allocated to them, and
then the next subtask will be allocated to the worker as

n̄, f̄ ← argmax{ztm,k(µ̄tm,n,γ̄
t
m,n)+

√
2 lnutm,n
θtm,n

}. (11)

For each task stm, the crowdsourcing platform allocates one
subtask to every worker n, determining the frame rate f tm,k
according to Eq. (9) based on observed values µ̃tm,n and γ̃tm,n.
If the observations are accurate, namely µ̃tm,n = µtm,n and
γ̃tm,n=γtm,n (and hence z̃tm,k=ztm,k), then learning process
can be terminated. And for the remaining subtasks of task stm,
the crowdsourcing platform will select the optimal worker n
and frame rate f tm,k, the solution to maxn,ft

m,k
ztm,k. However,

due to the variance in energy consumption µ̃tm,n and γ̃tm,n,
z̃tm,k is only a noisy version of ztm,k. Thus, this simple learn-
ing scheme will perform very poorly because the allocated
subtasks may get trapped in some worker whose ztm,k is
actually small. Therefore, a more sophisticated and effective
learning algorithm requires continuous learning to smooth
out the measurement noise. Actually, selecting the optimal
worker and frame rate for subtasks of each subtask manifests
a sequential decision making problem, which involves the
critical tradeoff between exploration and exploitation: on one
hand, the crowdsourcing platform needs to explore different
workers by allocating subtasks to them and learning good
estimates of ztm,k; on the other hand, it tends to allocate as
many subtasks as possible to a priori unknown optimal worker
and further select the optimal frame rate for subtasks.

For each epoch, Algorithm 2 is designed to learn the
optimal worker and frame rate. In lines 2-5, the initialization
only applies to the new workers in each epoch, and the
information for the remaining workers is retained and hence
reused. Lines 6-10 are the continuous learning phase for each
epoch, to find a priori unknown optimal worker, taking into
account the joining time of the worker, i.e., line 7.
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IV. PERFORMANCE ANALYSIS

The relationships between all the lemmas and theorems are
illustrated in Fig. 6, where the main result regarding the regret
of long-term objective is shown in Theorem 1 and the result
regarding the long-term constraint is shown in Theorem 2.

Preliminaries: When using the volatile multi-armed bandit,
the regret we use for stm is defined in details as follows:

Rm(t) =
∑Kt

m

k=1
E[ztm,k(n, f tm,k)− ztm,k(nt,∗m , f t,∗m,k)],

where ztm,k(n, f tm,k) is the objective in P2 for subtask stm,k
by Algorithm 2, and ztm,k(nt,∗m , f t,∗m,k) is achieved by selecting
the optimal worker nt,∗m and frame rate f t,∗m,k for subtask stm,k
that solve problem P2 when all of the inputs are observed.

Lemma 1. For slot t, when adopting Algorithm 2 to approxi-
mately solve problem P2 without priori information µtm,n and
γtm,n, the regret for each task stm is upper bounded as follows:

Rm(t) ≤ |J t|
∑

n 6=nt,∗
m

8ln(Kt
m)/∆t

m,n + 8∆t
m,n/3,

where nt,∗m is the optimal worker selected for task stm, and
∆t
m,n is defined as E[ztm,k(nt,∗m , f t,∗m,k)]− E[ztm,k(n, f tm,k)].

Proof. See Appendix A, via volatile multi-armed bandit.

Lemma 2. When P2 is solved with the optimal solution, the
time-averaged crowdsourcing profit for P1 satisfies:

lim
T→+∞

1

T

∑T

t=0
E[U t] ≥ popt −B/V,

where popt is the optimal crowdsourcing profit in P1 that can
be obtained by ignoring the accuracy constraint.

Proof. See Appendix B, by using Lyapunov optimization.

Lemma 3. When the subproblem P2 is solved with the optimal
solution, the analysis accuracy for P1 satisfies:

lim
T→+∞

1

T

∑T

t=0
E[at] ≥ Amin +

1

ε
[B + V (popt − pmin)],

where pmin is the objective of the worst solution for problem
P1, and ε < 0 is a constant as the long-term accuracy surplus
achieved by some stationary control policy.

Proof. See Appendix C, also via Lyapunov optimization.

Theorem 1. The time-averaged crowdsourcing profit achieved
by adopting Algorithm 1 satisfies the following inequality:

lim
T→+∞

1

T

∑T

t=0
E[U t] ≥ popt − (B +W )/V,

where popt is the optimal profit and P2 is solved with a
bounded deviation, denoted as the parameter W .

Proof. See Appendix D, combining Lemmas 1 and 2.
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Fig. 7. Results of LOL in a demo example with Mt = 2, ∀t

Theorem 2. The accuracy achieved by Algorithm 1 satisfies:

lim
T→+∞

1

T

T∑
t=1

E[at]≥Amin+
B+W+V (popt−pmin)

ε
,

where pmin is the objective of the worst solution for problem
P1, and ε < 0 is a constant as the long-term accuracy surplus
achieved by some stationary control policy.

Proof. See Appendix E, combining Lemmas 1 and 3.

The above theorems demonstrate an [O(1/V ), O(V )] profit-
accuracy tradeoff. Upon the trade-off, we can choose an
arbitrarily large value of V → +∞ to drive the time-averaged
crowdsourcing profit arbitrarily close to the optimal popt at a
cost. Besides, Theorem 2 also implies that the time-averaged
accuracy queue backlog grows linearly with V .

V. EXPERIMENTS AND RESULT ANALYSIS

In this section, we evaluate the performance of our proposed
algorithm by extensive trace-driven experiments, and compare
it against alternative algorithms to show the effectiveness.

A. Experiment Settings

Our extensive trace-driven experiments use the videos de-
rived from the AI City Datasets 2019 [36] for evaluating
our online dispatcher for video analytics upon YOLOv3 [11],
compared with other algorithms. The input frame sizes include
360p, 540p, 720p, 840p, 960p and 1080p, and the original
frame rate is set as 30fps. Based on the traces derived from
[14, 21, 22], we set the computation energy consumption
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Fig. 9. Suboptimal Decision and Impact of Workers and Subtasks

µtm,n ∼ N(5, 0.5) J/frame and the transmission energy con-
sumption γtm,n ∼ N(5, 0.5)×10−6 (J) by default. We generate
the changes of the available worker set upon the dataset of
Users Active Time Prediction [47]. Furthermore, we set the
parameters α = 1 and ωn ∼ U(0, 1) in the experiments.

We compare our proposed algorithms with 4 alternatives:
• Profit-optimal determines the worker selection and con-

figuration for maximum profit, but it ignores the accuracy
constraint, promised by the crowdsourcing platform.

• Accuracy-optimal maximizes the accuracy per slot for
video analytics, but it ignores the crowdsourcing profit.

• Exploration-prior also conducts the learning of energy
consumption rates for workers, but it prefers to perform
the strategy of exploration in the bandit.

• Exploitation-prior also conducts the learning of energy
consumption rates for workers, but it prefers to perform
the strategy of exploitation in the bandit.

Except for these algorithms compared with LOL, LOL-M
means Algorithm 1 triggers the traditional bandit.

B. Experiment Results

Effectiveness of LOL: Figure 7 shows the results from
LOL in a demo example with M t = 2,∀t ∈ {1, 2, ..., 40}.
As demonstrated in Figure 7(a), the video analytics tasks in
the first 20 time slots mainly contain the targets closed to
the camera, while the targets in the last 20 time slots are
faraway. In order to detect the targets far away and maintain
high accuracy, the resolution is adapted to higher values when
the crowdsourcing platform is selecting the configuration for
the tasks in the last 20 time slots, as shown in Figure 7(c).
Similarly, we learn from Figure 7(b) that the target velocities
in the analytics tasks of the first 20 time slots and the last 20
time slots are different. Thus, a higher frame rate is needed
to capture the targets of high speed and keep the analytics
accuracy high in the last 20 time slots, which we can observe
in Figure 7(d). The intuitions behind these adjustments are

that “resolution can be reduced when the target size is large
enough” and “some redundant frames can be skipped when
the difference between the adjacent frames is small”.

Accuracy Constraint: Figure 8 shows the impact of control
parameter V as well as accuracy guarantee Amin on the av-
erage queue backlog. Each accuracy queue backlog gradually
converges to a certain value. Thus, the long-term accuracy
constraint can be satisfied if there are enough time slots. In
Figure 8(a), we observe that when the value of V is large, the
queue backlog needs more time slots to converge; when V
decreases, the accuracy is the primary goal, and the accuracy
queue easily becomes stable. Figure 8(b) shows the average
queue backlog under different values of Amin. When Amin

is high, the accuracy constraint can be violated, and then the
convergency value of queue backlog will be large. On the
contrary, a smaller Amin makes it easier to satisfy the accuracy
constraint, thus keeping the queue backlog at a smaller value.

Profit: Figure 8 compares the profit and accuracy over the
different numbers of workers/subtasks of LOL with other 2
benchmark algorithms. With the increase of the number of
workers and subtasks, the LOL algorithm can still achieve
good performance in profit and accuracy. It is worth noting
that compared with the Profit-optimal algorithm, our proposed
LOL algorithm can achieve almost the same profit and at the
same time, LOL also obtains a higher accuracy.

Various Scenarios: We explore the changes of subop-
timal decision probability as the learning times increases.
Figure 9(a) shows that as the learning times of LOL in-
creases, the probability of selecting suboptimal workers and
configuration is reduced drastically. When the observation
variance is zero, the crowdsourcing platform can always
find the optimal worker after allocating one subtask to each
available worker. When the observation variance increases, the
probability of selecting suboptimal workers decreases. For the
proposed LOL and other 2 algorithms, the impact of number
of workers/subtasks on goal value (objective in P2) is shown in
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Fig. 10. LOL algorithm vs. LOL-M algorithm.

Figures 9(b) and 9(c). With the different number of workers
and subtasks, LOL has a significant advantage in achieving
higher goal value, which is improved by 68% on average.

We compare the proposed LOL algorithm with LOL-M
under the varying worker set. We show the results by dividing
the process of selecting workers and allocating subtasks into
3 epochs. At the beginning of epoch 2 (when learning times
is 15), the optimal worker 1 in epoch 1 exits, while at the
beginning of epoch 3 (learning times is 30), a new optimal
worker 2 in epoch 3 joins. As shown in Figure 10(a), when
the optimal worker 2 joins at the beginning of epoch 3,
LOL-M requires some time to learn the information of all
workers, which results in low goal values. However, for
LOL, there is no need to learn the information again, and
the high goal values can be maintained. LOL can retain the
information of remaining workers while LOL-M restarts the
learning process when there appears a change of the worker
set. Furthermore, the goal values achieved by LOL-M, LOL
and other 2 algorithms are demonstrated in Figure 10(b). Since
LOL leverages the volatile multi-armed bandit to capture
the workers’ availability and the stochastic uses of worker
resources, it outperforms the other 3 algorithms.

VI. RELATED WORK

We summarize the prior studies by the following categories
and highlight their shortcomings compared with our work.

A. Configuration for Video Analytics

Chameleon [9] was presented as a controller that dynami-
cally picked the best configurations for NN-based video ana-
lytics pipelines. Distream [19] was proposed as a distributed
live video analytics system, which was able to adapt to the
workload dynamics to achieve low-latency, high-throughput,
and scalable live video analytics. Wang et al. [14] developed
an efficient online algorithm, which jointly optimized configu-
ration adaption and bandwidth allocation in edge-based video
analytics systems. Reducto [20] was built to dynamically adapt
filtering decisions upon the time-varying correlation between
feature type, filtering threshold, query accuracy and the video
content. DDS [16] was presented to continuously send a low-
quality video stream to the server, which executed the DNN
with low latency to increase the inference accuracy.

However, these works fail to consider the crowdsourcing
profit when conducting the video analytics over workers.

B. Selection for Crowdsourcing

Wang et al. [26] focused on the insufficient participation
problem with limited number of workers and proposed to

leverage social network to recruit workers as well as expand-
ing the worker pool. Gao et al. [27] focused on the unknown
worker recruitment problem in mobile crowdsensing and
determined a recruiting strategy to maximize the completion
quality. Lu et al. [28] studied the problem of least workers
selection to make crowdsourcing system perform sensing tasks
more effective with certain constraints satisfied. Liu et al. [29]
proposed a user recruitment strategy with truthful pricing to
tackle the online recruitment problem constrained by a budget.
Li et al. [30] studied how to select optimal mobile users to
construct an accurate monitoring map under a limited budget.

These works focus on worker recruitment for crowdsourc-
ing in different scenarios. However, almost no work considers
the varying worker set along with the analytics for videos.

C. Changes on Resource Usage

Li et al. [31] proposed related online framework to solve
the multi-dimensional large-scale task assignment for utility
maximization by running atomic tasks in parallel on workers.
Kang et al. [32] developed a multi-armed bandit framework to
learn a worker’s preferences and his reliabilities for different
categories of tasks. Zhao et al. [33] tackled the unknown
worker recruitment by modeling it as a differentially private
multi-armed bandit game by seeing each worker as an arm the
task completion quality as the reward of pulling arm. Jin et al.
[35] studied the anytime batched multi-armed bandit problem
and proposed an algorithm that achieves the asymptotically
optimal regret for exponential families of reward distributions.

These works have already treated the stochastic usage of
resources, but fail to adjust the configurations for videos to
maximize the profit for crowdsourcing platform.

VII. CONCLUSION

To maximize the crowdsourcing profit for video analytics,
we formulate a non-linear integer program, considering both
resource-quality trade-off for videos and workers’ dynamic
availability. We then propose a series of subproblems for
tackling the proposed time-coupled long-term constraint, upon
the Lyapunov optimization and volatile multi-armed bandit.
Essentially, each one of the subproblems decides the configu-
rations and workers for videos upon the prediction calculated
by the bandit. Via rigorous proof, the regret measuring the
gap between online decisions and the optimum is ensured.
Extensive trace-driven experiments show the improvement of
our proposed algorithm LOL compared with other algorithms.

APPENDIX

A. Proof of Lemma 1

Proof. To prove Lemma 1, we first introduce a proposition:

Proposition 1. (Hoeffding) Given independent random vari-
ables where ai≤Xi≤bi, almost surely (with prob. 1) we have

P(
1

m

m∑
i=1

Xi−
1

m

m∑
i=1

E[Xi]≥ε)≤ exp(
−2ε2m2∑m
i=1(bi−ai)2

). (12)

Proof. The proof can be obtained from [48].



In epoch j of slot t, when the platform is allocating the
subtasks of stm, we define the optimal worker n as nt,∗m,j , which
maximize E[ztm,k(n, f tm,k)]. When there is no conflict of
meaning, we abbreviate nt,∗m,j as n∗. Then worker n 6= n∗ will
only be selected in the 2 cases: workers n∗ and n have been
explored insufficiently to distinguish between their means,
or the upper confidence bound obtained from Hoeffding’s
inequality fails for either worker n∗ or n. We consider the
first case and bound the chance that a suboptimal worker will
be selected due to insufficient sampling.

Let ztm,n denote E[ztm,k(n, f tm,k)] and suppose there are two

events: A is defined as z̄tm,n ≤ ztm,n+

√
2 lnut

m,n

θtm,n
, and B is

z̄tm,n∗≥ztm,n∗−
√

2 lnut
m,n∗

θt
m,n∗

. In order to bound the probability

of the complementary events of A and B occurring, we apply
the Hoeffding’s Inequality in Proposition 1. Since event A fails

when z̄tm,n−ztm,n>
√

2 lnut
m,n

θtm,n
, we plug ε =

√
2 lnut

m,n

θtm,n
, and

get P(z̄tm,n−ztm,n>
√

(2 lnutm,n)/θtm,n)≤utm,n
−4. Similarly,

we have P(ztm,n∗−z̄tm,n∗)>
√

(2 lnutm,n∗)/θ
t
m,n∗)≤utm,n∗

−4.
Next, we try to bound the number of suboptimal worker

selection in the epoch j of time slot t. A suboptimal worker
n is only selected if its upper confidence bound exceeds that of

worker n∗, i.e., z̄tm,n+
√

2 lnut
m,n

θtm,n
>z̄tm,n∗+

√
2 lnut

m,n∗

θt
m,n∗

. If A is

true, we have z̄tm,n+
√

2 lnut
m,n

θtm,n
≤ztm,n+2

√
2 lnut

m,n

θtm,n
. Similarly

for event B, we have z̄tm,n∗+
√

2 lnut
m,n∗

θt
m,n∗

≥ztm,n∗ . Combining

the above 3 inequalities, we get ztm,n+ 2

√
2 lnut

m,n

θtm,n
> ztm,n∗ .

Calculating the number of times θtm,n that worker n has
been selected in the epoch j of time slot t, we get θtm,n <
8∆−2

n lnutm,n ≤ 8∆−2
n lnKt

m, where ∆n = maxn′{ztm,n′−
ztm,n}. Thus, if both of these two events A and B hold, we
select worker n at most 8∆−2

n lnKt
m times.

Recall that worker n 6= n∗ will only be selected if either it
is sampled insufficiently (fewer than 8∆−2

n lnKt
m), or event

A or B fails. For worker n, we calculate the expected number
of times it is selected in the epoch j of time slot t as

E[θtm,n] ≤ 8∆−2
n lnKt

m +
∑Kt

m

k=1
E[I{Ā ∪ B̄}] (13a)

≤8∆−2
n lnKt

m +
∑Kt

m

k=1
E[I{Ā}] + E[I{B̄}] (13b)

≤8∆−2
n lnKt

m + 8/3, (13c)

where the inequality (13c) follows that for any k′,∑Kt
m

k′=1k
′−4 ≤ 1 +

∫∞
1
x−4dx = 1 + −1

1−4 = 4/3. Since there
are J t epochs in time slot t, the regret is proved.

B. Proof of Lemma 2
Proof. To prove Lemma 2, we first introduce a proposition:

Proposition 2. For any δ > 0, there exists a stationary and
randomized policy Π for P1, which decides xΠ,t and fΠ,t

independent of the current queue backlog q(t), such that the
following inequalities are satisfied:
E[Amin − aΠ,t] ≤ δ, and E[IΠ,t −OΠ,t] ≥ popt − δ. (14)

Proof. The proof can be obtained by Theorem 4.5 in [49],
which is omitted for brevity.

Assuming we can get the optimal solution to P2, The
strategies that maximize the utility in P1 among feasible
decisions include the policy Π in Proposition 2. By plugging
Proposition 2 into the drift-plus-penalty inequality, we have
∆(q(t))− V E[U t|q(t)]
≤B+q(t)E[Amin−aΠ,t|q(t)]−V E[UΠ,t|q(t)] (15a)
≤B + δq(t)− V (popt − δ). (15b)

By letting δ approach 0, summing the above inequality over
t ∈ {0, 1, ..., T} and dividing the result by T , we obtain
E[L(q(t+1))−L(q(0))]−V

∑T
t=0 E[U t|q(t)]

T
≤B−V popt. (16)

Considering that L(q(0)) = 0 and L(q(t)) ≥ 0, we rearrange
the terms in (16) and get the time-averaged profit bound, i.e.,

lim
T→+∞

1

T

∑T

t=0
E[U t] ≥ popt −B/V. �

C. Proof of Lemma 3
Proof. To obtain time-averaged accuracy bound, we assume
there exists ε < 0, Φ(ε) and a policy Γ that satisfy

E[Amin − aΠ,t] ≤ ε, and E[UΠ,t] = Φ(ε). (17)
Plugging (17) into drift-plus-penalty inequality, we get

∆(q(t))− V E[U t|q(t)] ≤ B + εq(t)− V Φ(ε). (18)
By summing the above inequality over t ∈ {0, 1, ..., T} and
rearranging the terms, we have

1

T

T∑
t=0

E[q(t)]≤
B+V ( 1

T

∑T
t=1 E[UΠ,t]−Φ(ε))

−ε

≤ [B+V (popt − pmin)]/(−ε).
(19)

Considering
∑T
t=0 E[q(t)] ≥

∑T
t=0 E[Amin − at], we have

1

T

∑T

t=0
E[at] ≥ Amin +

1

ε
[B + V (popt − pmin)]. (20)

Taking a “lim” sup of the above inequality as T → +∞, we
obtain the time-averaged accuracy bound.

D. Proof of Theorem 1
Proof. Considering P2 can be approximately solved by Algo-
rithm 2 within a bounded deviation W based on Lemma 1,
and plugging Proposition 2 into drift-plus-penalty, we have

∆(q(t))−V E[U t|q(t)]≤B+δq(t)−V (popt−δ)+W. (21)
Then, based on the proof of Lemma 2, we get the profit bound,
limT→+∞

1
T

∑T
t=0 E[U t] ≥ popt − (B +W )/V .

E. Proof of Theorem 2
Proof. Considering P2 can be approximately solved by Algo-
rithm 2 within a bounded deviation W based on Lemma 1,
and using the ε and Φ defined in Lemma 3, we get

∆(q(t))− V E[U t|q(t)] ≤ B + εq(t)− V Φ(ε) +W. (22)
Then, based on the proof of Lemma 3, we have

1

T

∑T

t=0
E[at] ≥ Amin+

1

ε
[B+W+V (popt−pmin)]. (23)

Taking a “lim” sup of the above inequality as T → +∞, we
obtain the time-averaged accuracy bound.
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