
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

LOCUS: User-perceived Delay-aware Service
Placement and User Allocation in MEC Environment

Yu Chen, Sheng Zhang, Member, IEEE, Yibo Jin, Member, IEEE, Zhuzhong Qian, Member, IEEE,
Mingjun Xiao, Member, IEEE, Jidong Ge, Member, IEEE, and Sanglu Lu, Member, IEEE

Abstract—In the multi-access edge computing environment, app vendors deploy their services and applications at the network edges,
and edge users offload their computation tasks to edge servers. We study the user-perceived delay-aware service placement and user-
allocation problem in edge environment. We model the MEC-enabled network, where the user-perceived delay consists of computing
delay and transmission delay. The total cost in the offloading system is defined as the sum of service placement, edge server usage
and energy consumption cost, and we need to minimize the total cost by determining the overall service-placing decision and user-
allocation decision, while guaranteeing that the user-perceived delay requirement of each user is fulfilled. Our considered problem is
formulated as a Mixed Integer Linear Programming problem, and we prove its NP-hardness. Due to the intractability of the considered
problem, we propose a LOCal-search based algorithm for USer-perceived delay-aware service placement and user-allocation in edge
environment, named LOCUS, which starts with a feasible solution and then repeatedly reduces the total cost by performing local-search
steps. After that, we analyze the time complexity of LOCUS and prove that it achieves provable guaranteed performance. Finally, we
compare LOCUS with other existing methods and show its good performance through experiments.

Index Terms—User-perceived delay, service placement, user allocation, edge computing, local search.
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1 INTRODUCTION

IN past years, we are witnessing the explosive growth
of mobile and IoT devices, such as smartphones,

wearable devices, self-driving vehicles, etc. Our daily life
is exposed to a rich variety of services and applications,
some of which are delay-sensitive and require low la-
tency. Traditionally, the widely used cloud computing
technology provides centralized service support for the
applications, and computation tasks are offloaded to ap-
plication vendors’ servers in the cloud [1], [2]. However,
the centralization of services leads to a long distance
between users and clouds, which tends to increase the
end-to-end latency. Thus, the existing cloud computing
paradigm cannot satisfy the stringent timeliness require-
ments of the delay-sensitive applications.

Usually, network latency impacts application perfor-
mance, service quality and user experience. In order to
meet the requirements for low latency, a new paradigm
of Multi-access Edge Computing (MEC) [3], [4], [5] is
proposed as an extension of centralized clouds to tackle
the challenge of network latency. The main character-
istic of MEC is to bring the computation and storage
resources to the edge networks. Edge users are directly
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connected to the nearest service-enabled edge networks,
which can provide the capabilities of computing and
caching. Application vendors can deploy their services
and applications on the edge servers rather than the
remote clouds in order to significantly reduce the latency
from the cloud-hosted services to the end devices [6].

Service is an abstraction of applications hosted by
the edge servers and requested by edge users, which
includes Augmented Reality (AR), Virtual Reality (VR),
facial identification, connected cars [7] and so on. Service
placement refers to configuring the platform and storing
the related libraries/databases of a service on the edge
server. Unlike the clouds which have huge and diverse
resources, edge servers only have limited computing and
storage resources to allow a small number of services
to be placed [8]. Different kinds of services consume
different amounts of resource and then result in different
costs of service placement, which poses the challenge to
tackling the service placement problem.

As shown in Fig. 1, MEC-enabled base stations each
equipped with an edge server are densely distributed in
the edge environment. The geographical coverage areas
of them usually partially overlap in case of non-service
areas where users fail to get service from any edge server
[9], [10]. Each user in the overlapping will connect to
one of MEC-enabled base stations covering them and
be allocated to the associated edge server. Compared
to cloud servers, there are limited computing resources
on edge servers due to their size limit [11]. Thus, it is
important to determine an effective user-to-edge-server
allocation to prevent the waste of edge server resources.

When determining the user-to-edge-server allocation,
the two popular paradigms of task offloading [3] include
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Fig. 1. User 1 offloads its task A to the only edge server 1,
while user 2 divides its task B into two parts and offloads
them to edge server 1 and 2.

binary offloading and partial offloading. The paradigm
of binary offloading applies for the highly integrated
task, which cannot be partitioned and have to be of-
floaded as a whole to only one edge server. However,
in practice, many applications are composed of multiple
procedures or involve processing chunks of data (e.g.,
the application of vehicle counting in traffic surveillance
videos), which makes it possible to partition the com-
putation task into multiple parts and offload them to
different edge servers for parallel execution.

Although service placement [9], [12], [13], [14], [15],
[16], [17] and user allocation [18], [19], [20], [21] have
received much attention in research field, a joint design
of them has not been studied adequately. Some other
works [22], [23], [24], [25], [26] have tackled the joint
design of service placement and user allocation, but
fail to consider the aspect of constrained user-perceived
delay. The rest [27], [28], [29], [30] have already taken the
user-perceived delay into consideration , but they fail to
achieve the approximation guarantee by rigorous proof.

In this paper, we study the user-perceived delay-aware
service placement and user allocation problem in MEC.
The main contributions of this paper are as follows.

• We present the modeling of MEC-enabled network,
user-perceived delay and total cost of task offload-
ing system, based on which we consider the prob-
lem of user-perceived delay-aware service place-
ment and user allocation.

• We formulate the user-perceived delay-aware ser-
vice placement and user allocation problem as a
mixed integer linear programming problem which
aims at minimizing the total cost of task offloading
system, and we prove that it is NP-hard by reducing
another well-known NP-hard problem to it.

• Due to the NP-hardness of the considered problem,
it is impossible to find the optimal solution in
polynomial time. To effectively deal with its high
complexity, we propose LOCUS, which is imple-
mented based on three local-search operations New,
Swap and Delete. We analyze the time complexity of

LOCUS and prove that it achieves an approximation
factor of (8 + δ) for a sufficiently large constant δ.

• In the experiment, we use 20 Raspberry Pis and 5
PowerEdge R740s to simulate the edge users and
edge servers, respectively; meanwhile, we design 5
kinds of services including word counting, word
finding, vehicle counting in a video, pedestrian
counting in a video and object detection in a video.
Based on the real-world dataset derived from the AI
City Datasets 2019 [31], we compare our proposed
algorithm LOCUS with 4 existing designs. The ex-
periment results show that LOCUS outperforms
other methods and significantly reduces the total
cost of task offloading system.

The remainder of this paper is organized as follows.
We review the related work in Section 2. We introduce
the system and notations in Section 3. In Section 4, we
formulate the considered optimization problem and ana-
lyze its complexity. After that, we propose a polynomial-
time algorithm LOCUS in Section 5 and then analyze
its approximation guarantee in Section 6. Through some
experiments, we compare our proposed algorithm with
other existing designs and evaluate its performance in
Section 7. Finally, we discuss some possible future works
and conclude the paper in Section 8.

2 RELATED WORK
We summarize some studies by the following categories
and highlight their drawbacks compared with our work.

2.1 Multi-access Edge Computing
Xu et al. [9] investigated the dynamic service placement
in MEC, and proposed an online algorithm which jointly
optimizes task offloading and dynamic service caching
to tackle the unknown system dynamics, service hetero-
geneity and decentralized coordination. Chen et al. [16]
studied the problem of collaborative service placement
in MEC and proposed an efficient decentralized algo-
rithm where the service placement decisions of BSs are
optimized. Xu et al. [17] designed a distributed game-
theoretical mechanism for the problem of service place-
ment, where resources are shared among the service
providers and the social cost of them is minimized.
Zhan et al. [19] designed a decentralized algorithm for
user allocation and computation offloading, where game
theory is applied in the algorithm design and users
choose their offloading decisions independently. Chen et
al. [21] formulated the task offloading and user allocation
problem in MEC as a minority game, and proposed
an minority game based scheme converging to a near-
optimal point. Lai et al. [18] utilized the distributed
nature of edge computing and proposed an efficient
game-theoretic approach to tackle the problem of user
allocation in the MEC environment.

These works have studied the issues related to service
placement or user allocation in the multi-access edge
computing environment, but fail to investigate the joint
design of service placement and user allocation.
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2.2 Service Placement and User Allocation
Behravesh et al. [22] proposed a heuristic algorithm
to tackle the problem of joint user association, SFC
placement, and resource allocation, employing mixed-
integer linear programming techniques. Poularakis et al.
[23] studied the joint optimization of service placement
and request routing in MEC environment and proposed
an algorithm that achieves close-to-optimal performance
using randomized rounding. Yang et al. [24] designed
a Benders decomposition-based algorithm to solve the
problem of placing cloudlets and allocating requested
tasks to cloudlets and public cloud with the minimum to-
tal energy consumption. Yao et al. [25] investigated how
to deploy the servers in a cost-effective manner with-
out violating the service quality, and a low-complexity
heuristic algorithm was invented to address it. Tran et
al. [26] considered the cost-aware joint service caching
and task offloading assignment problem, and designed
a polynomial-time iterative algorithm to tackle it.

However, these related works fail to consider the as-
pect of constrained user-perceived delay when tackling
the joint design of service placement and user allocation.

2.3 User Perceived Delay
ShuffleDog [27] was implemented on commercial smart-
phones to significantly reduce the user-perceived latency
of foreground apps in running with aggressive back-
ground workload. Zhang et al. [28] proposed queuing
models for online service systems with proactive serving
capability and characterize the user delay reduction by
proactive serving. Jing et al. [29] investigated the content
placement and delivery strategies in the cache-enabled
wireless networks, which can characterize the end-to-
end user-perceived delay and data rates simultaneously.
Huang et al. [30] proposed a delay-tolerant wireless
caching system that takes both the feedback delay and
users’ availability into consideration.

These works have already taken the user-perceived
delay into consideration. However, they fail to achieves
the approximation guarantee by rigorous proof.

3 SYSTEM MODEL

Similar to [9], [26], [32], we divide time into many
time slots, each of which has a duration matching the
timescale where service placement and user allocation
decisions can be updated. In the following, we consider
the user-perceived delay-aware service placement and
user allocation in a specific time slot where the index is
omitted for the sake of simplicity.

The system architecture considered in this paper is
depicted in Fig. 2. On the client side, users upload their
user-related information (e.g., input data size, work-
load, user-perceived delay requirement) to the server
application; afterwards, they receive the user-allocation
decisions in turn. The offloading controllers on the client
side allocate users to the edge servers available and of-
floading users’ tasks to the corresponding edge servers.
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Fig. 2. The architecture of the edge-based service place-
ment and user allocation system.

In the server application, our proposed local-search
based algorithm LOCUS (which will be introduced in
detail in Section 5) is invoked, and it takes the infor-
mation about edge servers and services (e.g., computing
capacity of edge servers, workload upper limit for edge
servers and set of services) as the input. Based on the
results calculated from LOCUS, the service-placing con-
troller places services at the corresponding edge servers
and send the user-allocation decisions back to the clients.

In the rest of this section, we present the modeling
of MEC-enabled network, user-perceived delay and total
cost of task offloading system. Some important notations
used for model are listed in Table 1.

3.1 MEC-enabled Network
We consider a MEC-enabled wireless network consist-
ing of M edge servers, denoted as M = {1, 2, ...,M}.
As shown in Fig. 1, each edge server m is accessible
via a base station covering a specific geographical area
Cover(m) and can provide computing services to edge
users in its coverage area. We assume that there are S
services, denoted as S = {1, 2, ..., S}, and each user n
in the set of edge users N = {1, 2, ..., N} has a task
requiring one of these services to be executed.

Each user’s task has its own computation demand and
input data size. We let the workload and input data
size of each user n’s task be ln [CPU cycles] and bn
[bits], respectively. In the MEC-enabled network, each
edge user can be in the coverage area of multiple edge
servers and it can choose to offload its task to these edge
servers. As considered in [9], [26], [32], we assume that
each user can split its task into multiple portions and
offload each of them to different edge server, and that the
computation demand of each user’s task is proportional
to the input data size. We define the continuous user-
allocation variable as xn,m ∈ [0, 1] to denote the fraction
of user n’s task offloaded to server m. Thus, we have∑

m∈M
xn,m = 1,∀n ∈N . (1)

Then we can calculate that the workload and input data
size of user n’s task offloaded to the edge server m are
xn,mln and xn,mbn, respectively.

Following the ideas in [9], [20], [33], though the multi-
access edge computing server may perform parallel
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TABLE 1
Major Notations used for Model

Inputs Descriptions
N , N Set of edge users, number of edge users
M,M Set of edge servers, number of edge servers
S, S Set of services, number of services
ln, bn Workload and input data size of user n’s task
Fm Computing capacity of edge server m
Lm Workload upper limit for edge server m
N s Set of users requesting each service s
Nm Set of users within edge server m’s coverage
Mn Set of user n’s neighboring edge servers
Dc

n,m Computing delay for user n on edge server m
rn,m Uplink data rate between user n and server m
Dt

n,m Transmission delay between user n and server m
dn User n’s perceived delay requirement
cpm,s Cost to place service s at edge server m
cum Cost for one unit workload execution on server m
ce Cost for one unit of energy consumption

Cp, Cu, Ce Service placement cost, edge server usage cost,
energy consumption cost

Decisions Descriptions
xn,m Fraction of user n’s task offloaded to server m

ym,s
Binary service-placing variable indicating whether
service s is placed on edge server m

X ,Y Overall user-allocation and service-placing decision

processing by allocating its computing capacity to the
multiple computing tasks that have been offloaded to
it, we reasonably assume that each user’s task on the
edge server m can be processed with computing capacity
Fm [CPU cycles/s] since the workload on each edge
server is limited (i.e., Lm [CPU cycles]) in a specific
time-slot, which means that the total sum of the task
workloads offloaded to edge server m in the specific
time-slot cannot exceed Lm. Thus, the limited computing
resources constraint of edge server m can be showed as∑

n∈N
xn,mln ≤ Lm,∀m ∈M. (2)

Besides, we define the binary service-placing variable
as ym,s ∈ {0, 1}, where ym,s = 1 if service s is placed
at edge server m and ym,s = 0 otherwise. Edge users
requesting service s can offload their tasks to server m
only when ym,s = 1. Thus, it must hold that

xn,m ≤ ym,s,∀n ∈N s, (3)

where N s ⊆N represents the set of edge users request-
ing service s. For ease of exposition, we use X,{xn,m :
n∈N ,m∈M} and Y,{ym,s :m∈M, s∈S} to denote
the overall user-allocation decision and overall service-
placing decision, respectively.

3.2 User-perceived Delay
Similar to the works in [15], [34], [35], the user-perceived
delay in the MEC environment is mainly determined by
computing delay and transmission delay.

Computing Delay: As mentioned previously, the com-
puting capacity of each edge server m is Fm [CPU
cycles/s] in the specific time slot. Thus, the computing
delay for user n on the edge server m ∈ Mn can be
calculated as Dc

n,m = xn,mln/Fm.
Transmission Delay: To keep the reasonable complex-

ity of the physical-layer wireless channels, we consider

that the users and edge servers use single antenna for
transmission, and that the uplink channel gain hn,m
between user n and edge server m is constant based on
the best channel gain conditions of the users during the
specific task offloading time-slot [9], [26], [36].

Additionally, we consider that neighboring edge
servers are assigned orthogonal frequency and employ
enhanced inter-cell interference coordination techniques,
which is proposed in LTE Rel. 10 [37]. Thus, each user
can occupy an orthogonal subchannel with bandwidth
w. Then we can calculate the uplink data rate [bits/s]
between user n and edge server m, according to the
Shannon-Hartley formula [33], [38], [39], as

rn,m = w log2(1 + pnhn,m/σ
2), (4)

where the transmission power pn is the input parameter
determined by each user n, σ2 is the background noise
variance, and pnhn,m/σ

2 is the signal-to-noise ratio of
the uplink channel between user n and edge server m.

Thus, when user n is connected to edge server m ∈
Mn, the transmission delay for it can be calculated as

Dt
n,m =

xn,mbn
w log2(1 + pnhn,m/σ2)

. (5)

Total User-perceived Delay: Based on the computing
delay and transmission delay for each user n, we calcu-
late the user-perceived delay as

Dn = max
m∈Mn

{Dc
n,m +Dt

n,m}, (6)

where we define Mn , {m ∈ M|n ∈ Cover(m)},
and user n can offload the task to its neighboring edge
servers in Mn. It is worth noting that we neglect the
delay for the edge servers to send back the results of
the computation as in [26], [36], [40], due to the fact that
in many MEC-enabled services (e.g., video analysis and
massive text mining), the size of the computation result
is much smaller than the input data size.

For each user and the service it requests, too high user-
perceived delay is not acceptable. Thus, it must hold that

Dn ≤ dn,∀n ∈N , (7)

where dn means user n’s perceived delay requirement.

3.3 Total Cost of Task Offloading System
Similar to previous work [9], [26], different user alloca-
tion and service placing decisions incur different service
placement, edge server usage and energy consumption
costs in the specific time-slot.

3.3.1 Service Placement Cost
Due to the rapid development of storage technology [40],
we consider that the available space for service placing at
the edge servers is unlimited, while introducing the cost
associated with the service placement. This cost accounts
for the monetary cost imposed by network infrastructure
or service providers for storage space utilization at edge
servers. Thus, the service placement cost is calculated as

Cp =
∑

m∈M

∑
s∈S

ym,sc
p
m,s, (8)
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where cpm,s represents the cost to place service s at edge
server m. Generally, cpm,s depends on the storage ability
of server m and computing complexity of service s.

3.3.2 Edge Server Usage Cost
When the processing load is offloaded to the edge
servers, the edge server usage cost accounts for the
computation consumption, the fees of which are charged
by network infrastructure or service providers. Thus, the
edge server usage cost is defined as

Cu =
∑

m∈M

∑
n∈Nm

xn,mlnc
u
m, (9)

where we use Nm , {n ∈ N |n ∈ Cover(m)} to denote
the set of users within edge server m’s coverage, and cum
represents the cost associated with execution of one unit
workload on the edge server m.

3.3.3 Energy Consumption Cost
Energy consumption plays an important role for the
users in the multi-access computing environment [41],
and here we use the monetary cost of energy consump-
tion to represent its importance. As mentioned previ-
ously, when user n is connected to server m ∈Mn, the
transmission delay can be calculated as Eq. (5). Thus, the
total energy consumption cost for all users is

Ce =
∑
m∈M

∑
n∈Nm

xn,m
pnbn

w log2(1 + pnhn,m/σ2)
ce, (10)

where the transmission power pn is the input parameter
determined by each user n, and the monetary cost for
one unit of energy consumption is set to ce.

3.3.4 Total Cost
Considering that the monetary costs of service place-
ment, edge server usage and energy consumption are
the most important in our task offloading system, we
get the total cost based on them as

Ctotal = Cp + Cu + Ce. (11)

We will give the problem formulation in the next section,
where the total cost in the task offloading system will be
minimized, while guaranteeing that the user-perceived
delay requirement of each user is satisfied.

4 PROBLEM FORMULATION AND ANALYSIS

In this section, we formulate our considered problem
and then show its intractability by complexity analysis.

4.1 Problem Formulation
Given the user-allocation decision X and service-placing
decision Y , we can get the total cost in the task of-
floading system as W (X ,Y) = Ctotal in Eq. (11). Thus,
the problem of user-perceived delay-aware joint service
placement and user allocation assignment which aims at
minimizing the total cost can be formulated as a mixed
integer linear programming problem

P1 : min
X ,Y

Cp + Cu + Ce (12a)

s.t. xn,m ∈ [0, 1], ∀n∈N ,∀m∈M, (12b)
ym,s ∈ {0, 1}, ∀m∈M,∀s∈S, (12c)∑

m∈Mn

xn,m = 1, ∀n∈N , (12d)

xn,m ≤ ym,s, ∀n∈N s, (12e)∑
n∈Nm

xn,mln≤Lm, ∀m∈M, (12f)

Dc
n,m +Dt

n,m ≤ dn, ∀n∈N ,∀m∈M. (12g)

In the formulated problem P1 above, constraints (12b)
and (12c) specify the definitional domains of the user-
allocation decision and service-placing decision vari-
ables, respectively. Constraint (12d) ensures that all of the
workload from each user will be executed collectively
by the edge servers. Constraint (12e) ensures that the
users requesting service s can offload their tasks to server
m only when service s has been placed on server m.
Constraint (12f) guarantees that the total sum of the task
workloads offloaded to each edge server cannot exceed
its workload upper limit. Constraint (12g) guarantees the
user-perceived delay requirement should be satisfied.

4.2 Complexity Analysis
Proposition 1. P1, the problem of user-perceived delay-aware
joint service placement and user allocation assignment which
aims at minimizing the total cost is NP-hard.

Proof. We first briefly describe the well-known NP-hard
problem, capacitated facility location problem (CFLP)
[42]. Then we reduce CFLP to our considered problem
P1 and show that problem P1 is also NP-hard.
1© Desciprtion of CFLP: In the capacitated facility loca-

tion problem, suppose that there are N customers and M
facilities. We let an denote the demand of customer n,
and each customer can divide its demand into multiple
parts, which are sent to different facilities for produc-
tion; meanwhile, we suppose that each facility m has a
production capacity um, which is the maximum amount
of product that can be produced by facility m.

We use fm to denote the cost of opening facility m and
gmn means the cost of shipping the product from facility
m to customer n. Thus, the total cost is the sum of the
facility-opening cost and product-shipping cost. In order
to meet some fixed demands at minimum cost, we need
to decide (i) which of the M facilities to open and (ii)
which open facilities to use to supply the N customers.
2© Reducing CFLP to P1: By writing each instance of

CFLP as a special case of problem P1, we can reduce
CFLP to problem P1:
• The number of services in problem P1 is set to 1, and

each user’s perceived delay requirement in problem
P1 is set large enough.

• The consumer n with demand an in CFLP is
mapped to the user n with computation demand
ln in problem P1.

• The (opened) facility m with production capacity um
in CFLP is mapped to the edge server m (where the
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Algorithm 1: LP Solver for P2(Y)

Input: Y
Output: X

1 Solve problem P2(Y) using interior point method
in polynomial time;

2 Obtain the minimized total cost w(Y );
3 Output optimal user-allocation decision X ;

service is placed) with workload upper limit Lm in
problem P1.

• The cost of opening facilities in CFLP is mapped to
the cost of placing services in problem P1.

• The cost of shipping products in CFLP is mapped
to the total cost of edge server usage and energy
consumption in problem P1.

Hence, NP-hard problem CFLP can be reduced to our
considered problem P1, and problem P1 is NP-hard.

Since problem P1 is NP-hard, we cannot obtain the ex-
act solution to it in polynomial time. In the next section,
we propose an approximate algorithm for it, which can
give the suboptimal solution in the polynomial time.

5 PROPOSED ALGORITHM

In this section, we propose a polynomial-time local-
search algorithm which achieves an approximation fac-
tor of (8+δ), for a sufficiently large constant δ. The local-
search based algorithm first starts with an arbitrary fea-
sible solution and then repeatedly improves the solution
by performing local search steps. Within a polynomial
number of local search steps, we can obtain a suboptimal
solution achieving the desired approximation factor.

5.1 LP Solver for a Simplified Problem
To better describe the local search operations later, we
first formulate a simplified problem from the original
problem P1. For problem P1, we need to obtain a solution
of overall user-allocation decision X and service-placing
decision Y . And if we fix the decision Y , the original
problem P1 can be simplified as a Linear Program-
ming (LP) problem. Thus, we consider a user-allocation
problem P2(Y) where the service-placing decision Y is
given, and we determine the user-allocation decision X
to minimize the total cost WY(X ) = Ctotal. Then the
simplified problem P2(Y) can be formulated as

P2(Y):min
X

Cp + Cu + Ce (13a)

s.t. xn,m ∈ [0, 1], ∀n∈N ,∀m∈M, (13b)∑
m∈Mn

xn,m = 1, ∀n∈N , (13c)

xn,m ≤ ym,s, ∀n∈N s, (13d)∑
n∈Nm

xn,mln≤Lm, ∀m∈M, (13e)

Dc
n,m +Dt

n,m ≤ dn, ∀n∈N ,∀m∈M. (13f)

Different from problem P1, we only think about the
user-allocation decision variables in problem P2(Y). Fur-
thermore, since problem P2(Y) is an LP problem, it can

Algorithm 2: Local-search Operation New
Input: Set Y of placed services
Output: bstNeighbor, cstReduce

1 bstNeighbor ← ∅;
2 cstReduce← 0;
3 for each (m, s) ∈ {(m, s) : m ∈M, s ∈ S} − Y do
4 if w(Y )− w(Y ∪ {(m, s)}) > cstReduce then
5 bstNeighbor ← Y ∪ {(m, s)};
6 cstReduce← w(Y )− w(bstNeighbor);

be efficiently solved using interior point method (e.g.,
implemented in SciPy or Cplex) in polynomial time.

For convenience, we use Y = {(m, s) : ym,s = 1,m ∈
M, s ∈ S} to represent the set of services that have
been placed at the corresponding server, and it can be
determined by the overall service-placing decision Y . As
shown in Algorithm 1, we input the set Y of placed
services and then get the optimal user-allocation decision
X . Besides, we use w(Y ) to denote the minimized total
cost when the set of placed services is fixed at Y in
Algorithm 1. Therefore, based on Algorithm 1, if we have
obtained the optimal service-placing decision Y∗, we can
solve the considered problem P1 efficiently.

5.2 Three Local-search Operations
To obtain the (near-)optimal service-placing decision, we
design three local-search operations to let the service-
placing decision Y get closer to the optimum step by
step. Before describing the three local-search operations,
we introduce the concept of neighborhood in problem P1,
which will be used later in this section.

Definition 1. (Neighborhood) In problem P1, the neigh-
borhood of Y is defined as

Nei(Y ) = {T ⊆ F : |T − Y | ≤ 1, |Y − T | ≤ 1}, (14)

where F is {(m, s) : m ∈M, s ∈ S}.

When we apply a local-search based approach to the
considered problem P1, if we are given a current feasible
solution corresponding to a set Y of placed services, the
local-search operations will traverse the neighborhood
of Y and set the next new feasible solution as a set T
of minimum cost in Nei(Y ). Since the neighborhood of
Y contains a polynomial number of solutions and the
cost of each solution can be calculate via Algorithm 1 in
polynomial time, the local-search operations mentioned
above can be performed efficiently. Based on Defini-
tion 1, we divide the neighborhood of Y into 3 subsets:
• Sub1 = {T ⊆ F : |T − Y | = 1, |Y − T | = 0};
• Sub2 = {T ⊆ F : |T − Y | = 1, |Y − T | = 1};
• Sub3 = {T ⊆ F : |T − Y | = 0, |Y − T | = 1}.
Next we design three local-search operations including

New, Swap and Delete. From the set Y of placed services,
we can move to the set Sub1, Sub2 and Sub3 through
operation New, Swap and Delete, respectively.

New: As show in Algorithm 2, we design the local-
search operation New. Through New, we add a new
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element to set Y , which means that a new service will
be placed at some edge server. From line 3 to 8, we
traverse the neighborhood of Y to find the best neighbor
that reduces the total cost most. Finally, we get the best
neighbor bstNeighbor in Sub1, and the corresponding
cost reduction is cstReduce.

Swap: In Algorithm 3, we describe the local-search
operation Swap. Through Swap, we replace an element
in Y with an element not in Y , which means that a
placed service will be removed and a new service will be
placed at some edge server. Thus, we traverse Nei(Y )
to find the appropriate to-be-added and to-be-removed
services in lines 3-10. We finally obtain the best neighbor
bstNeighbor in Sub2 and maximize the cost reduction.

Algorithm 3: Local-search Operation Swap
Input: Set Y of placed services
Output: bstNeighbor, cstReduce

1 bstNeighbor ← ∅;
2 cstReduce← 0;
3 for each (m, s) ∈ Y do
4 for each (m′, s′)∈{(m, s) :m∈M, s∈S}−Y do
5 if w(Y )−w(Y ∪ {(m′, s′)}−{(m, s)}) >

cstReduce then
6 bstNeighbor←Y ∪{(m′, s′)}−{(m, s)};
7 cstReduce← w(Y )− w(bstNeighbor);

Delete: The design of operation Delete in Algorithm 4
is similar to New and Swap. The neighborhood of Y
is traversed to find the optimal to-be-removed service
which maximizes the cost reduction cstReduce in lines 3-
10, and the best neighbor bstNeighbor can be obtained.

Algorithm 4: Local-search Operation Delete
Input: Set Y of placed services
Output: bstNeighbor, cstReduce

1 bstNeighbor ← ∅;
2 cstReduce← 0;
3 for each (m, s) ∈ Y do
4 if w(Y )− w(Y − {(m, s)}) > cstReduce then
5 bstNeighbor ← Y − {(m, s)};
6 cstReduce← w(Y )− w(bstNeighbor);

5.3 Local-search Algorithm LOCUS
Now we are ready to describe the local-search algorithm
LOCUS in Algorithm 5. In step 1, we initialize the service
placement decisions and calculate the initial total cost.
As shown in lines 1-5, we place the services that are
requested by users in Nm at each edge server m. Then
in step 2, LOCUS repeatedly invokes one of the three
local-search operations New, Swap and Delete designed
above, as long as the cost reduction in each step is
sufficiently large. In Algorithm 5, the function p(M,S)
is a polynomial in M · S, where M is the edge server
number and S is the service number (e.g., we can choose
p(M,S) = M2S2). It is worth noting that when LOCUS
is being implemented, the three basic operations New,

Algorithm 5: LOCUS for user-perceived delay-
aware service placement and user allocation

1 %Step 1: Initialize service placement decisions;
2 Y = ∅;
3 for each m ∈M do
4 for each n ∈Nm do
5 Y ← Y ∪ {(m, srn)};

6 %Step 2: Iterative local search for (near-)optimum;
7 repeat
8 local success← False;
9 (bstNeighbor, cstReduce)← New(Y );

10 if cstReduce ≥ w(Y )/p(M,S) then
11 Y , local success← bstNeighbor, T rue;
12 Goto line 7;

13 (bstNeighbor, cstReduce)← Swap(Y );
14 if cstReduce ≥ w(Y )/p(M,S) then
15 Y , local success← bstNeighbor, T rue;
16 Goto line 7;

17 (bstNeighbor, cstReduce)← Delete(Y );
18 if cstReduce ≥ w(Y )/p(M,S) then
19 Y , local success← bstNeighbor, T rue;

20 until local success = False;

Swap and Delete invoked in LOCUS can be performed
in parallel, and within each iteration, the operation
reducing the cost most will be selected. Besides, in each
basic operation New, Swap or Delete, the operations of
calculating w(·) can also be performed in parallel.

6 PERFORMANCE ANALYSIS

The relationships between all the lemmas and theorems
are illustrated in Fig. 3, where the main result regarding
the optimization objective with approximate guarantee
achieved by LOCUS is shown in Theorem 1 and the
result about the time complexity is shown in Theorem 2.

For convenience, we use we(Y ) to represent the sum
of the edge server usage cost and energy consumption
cost, and use ws(Y ) to represent the service placement
cost when Algorithm 1 is applied to the problem P2(Y),
where the set of placed services is Y . And we use Y ∗

to denote the set of placed services corresponding to the
optimal service-placing decision Y∗.

Before we analyze the approximation guarantee of
LOCUS, we refer to the work [43] and give two lemmas,
as shown in Lemmas 1 and 2. The two lemmas can be ob-
tained based on the difference graph that captures the dif-
ferences in an arbitrary solution (X ,Y) and the optimal
solution (X ∗,Y∗). Specifically, we consider the flow X
as a flow in a bipartite graph with vertices corresponding
to services and edge users. In particular, there are xn,m
units flowing from service ym,s to edge user n along
each edge (ym,s, n). In order to compare the arbitrary
solution (X ,Y) with the optimal solution (X ∗,Y∗), we
consider the flow X − X ∗ whereby each edge (ym,s, n)
has xn,m − x∗n,m units of flow. The difference graph can



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

ℙ

Fix Y
Modified to ℙ

Lemma 1
Lemma 2

Theorem 2: Polynomial Time 

Theorem 1: Approximate Ratio of

Initialize Y

LP 
Solver

New, Swap, Delete 
with Fixed Y

Optimized , 
given Y

Obtain Overall 
Decision

Fig. 3. Relationship between proposed problems, algo-
rithms and theorems

bound the cost of reassigning the computation load from
the currently cached services to the services cached in
the optimal solution, and the bounded cost difference
is described in Lemmas 1 and 2. For brevity, we here
omit the detailed proof of Lemmas 1 and 2, which can
be referred to in [43].

Lemma 1 [43]. If there is no (m, s) which is not in the
current Y , such that

w(Y )− w(Y ∪ {(m, s)}) ≥ w(Y )/p(M,S), (15)

then
we(Y ) < w(Y ∗) +MSw(Y )/p(M,S), (16)

Lemma 2 [43]. If there is no (m, s) in the current Y to
perform the Swap or Delete operation so that the total cost is
reduced by at least w(Y )/p(M,S), then

ws(Y )(1− (MS)2

p(M,S)
) < 5w(Y ∗) + 2we(Y ) +

w(Y )

MS
. (17)

Theorem 1. The solution obtained from LOCUS has the total
cost at most 8 + δ times that of the optimal cost in problem
P1, for a sufficiently large constant δ.

Proof. According to Algorithm 5, when LOCUS termi-
nates after some local-search operations, there is no local-
search operation New, Swap or Delete so that the total
cost can be reduced by at least w(Y )/p(M,S) any more.
Thus, based on the two lemmas above, inequations (16)
and (17) are satisfied. Plugging (16) into (17), we get

ws(Y )(1− (MS)2

p(M,S)
)<7w(Y ∗)+

2MSw(Y )

p(M,S)
+
w(Y )

MS
. (18)

Based on inequation (16), we can also get

we(Y )(1− (MS)2

p(M,S)
) < w(Y ∗) +

MSw(Y )

p(M,S)
. (19)

Then we let inequation (18) plus (19), and we have

w(Y )(1− (MS)2

p(M,S)
) ≤ 8w(Y ∗)+

3MSw(Y )

p(M,S)
+
w(Y )

MS
. (20)

Rearranging, we obtain

w(Y )

w(Y ∗)
< 8

1

(1− (MS)2

p(M,S) −
3MS
p(M,S) −

1
MS )

. (21)

Therefore, for a sufficiently large constant δ satisfying

δ ≥ 8(
1

(1− (MS)2

p(M,S) −
3MS
p(M,S) −

1
MS )

− 1), (22)

Raspberry Pi * 20

Server 1

PowerEdge R740 * 5

Server 2

Server 3

Server 4

Server 5

Fig. 4. Illustration of our testbed.

the approximate optimal solution obtained from LOCUS
has the total cost at most 8+ δ times that of the optimal
cost in problem P1.

Theorem 2. The proposed algorithm LOCUS terminates after
at most O(p(M,S) log Wini

Wopt
) local-search operations, where

Wini is the initial total cost obtained in step 1 of LOCUS and
Wopt is the optimal total cost of problem P1.

Proof. We let R be the number of local-search operations
which are performed in LOCUS and let Wk be the
current total cost of problem P1 after the kth operation
is performed. Specifically, we set W0 = Wini. According
to Algorithm 5, it holds that

Wk −Wk+1 ≥
Wk

p(M,S)
, ∀k ∈ {0, 1, 2, ..., R− 1}. (23)

Thus, we can obtain

Wk

Wk+1
≥ 1

1− 1
p(M,S)

, ∀k ∈ {0, 1, 2, ..., R− 1}. (24)

LOCUS terminates after R local-search operations and
we get the (near-)optimal total cost of P1. Thus, we have

Wini

Wopt
≥ W0

WR
=
W0

W1
·W1

W2
·...·WR−1

WR
≥ (

1

1− 1
p(M,S)

)R. (25)

Besides, according to the definition of natural constant
e, it holds that

(1− 1

p(M,S)
)−p(M,S) ≥ e. (26)

Combining inequations (25) and (26), we obtain

R ≤ p(M,S) log
Wini

Wopt
. (27)

Therefore, the proposed algorithm LOCUS terminates
after at most O(p(M,S) log Wini

Wopt
) local-search operations,

which is polynomial in MS, and it is shown that LOCUS
has polynomial-time complexity.

7 EXPERIMENTS AND RESULT ANALYSIS

In this section, we evaluate the performance of our
proposed algorithm LOCUS through experiments with
various settings. Besides, we compare our design with
some other existing approaches.
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7.1 Experiment Settings

Similar to the previous works [20], [21], we first consider
a multi-access edge computing system containing 20
users and 5 edge servers. As demonstrated in Fig. 4,
we use 20 Raspberry Pis and 5 PowerEdge R740s (Silver
4210R 2.4G, 2*16GB RDIMM) to act as the users and
edge servers, respectively. We design 5 kinds of services
as follows. Word counting: counts the occurrences of a
specific word in a large amount of text; Word finding:
finds the positions of a specific word in a large amount
of text; Vehicle counting in a video: counts the number
of vehicles in the traffic surveillance video; Pedestrian
counting in a video: counts the number of pedestrians
in the traffic surveillance video; Object detection in a
video: detects a lost child in the store surveillance video.
The videos we used are mostly derived from the AI City
Datasets 2019 [31] (hundreds of video clips, 15 minutes
for each clip) for video analytics upon YOLOv3 [44]. The
testbed mentioned above is used to test the effectiveness
of our proposed algorithm.

Furthermore, to test the efficiency and scalability of
LOCUS, we set and vary some parameters in the exper-
iments. Based on the performance of hardware devices,
the computing capacity Fm for each edge server m is
assigned from the set {50, 100, 150} Gcycles/s, and the
workload upper limit Lm for edge server m is set to
900 Gcycles in the specific time slot. For the parameters
in Shannon-Hartley formula, we refer to the works [20],
[45]. The channel bandwidth is set to 20 MHz, and the
background noise is set to 50 dBm. In a specific time-slot,
each user holds the transmission power pn∼N(1, 0.1)W .
We set the uplink channel gain hn,m = (distn,m)µ, where
distn,m is the distance between user n and edge server
m, and the path loss factor µ is set to 4.

Beside, according to [15], each user n’s perceived delay
requirement dn is uniformly distributed in [1, 10] sec-
onds. The optimization objective in problem P1 consists
of three parts: service placement cost, edge server usage
cost and energy consumption cost, and we assume that
the three types of cost have almost the same influence on
the overall optimization objective, as studied in [20], [26].
Based on the optimal solution derived from the MILP
solver (e.g., Cplex, Mosek), we observe that the ratio of
the number of placed service, units of executed workload
and units of energy consumption is about 1 : 200 : 4 on
average. To balance the impacts of the three different
costs, we set cpm,s = 1, cum = 1/200 and ce = 1/4. We
compare our design LOCUS with 4 other schemes:

• Randomized Rounding Scheme (RRS): Similar to
the design in [17], RRS first relaxes constraint (12c)
into 0 ≤ ym,s ≤ 1, and then rounds the calculated
fractional solution to an integer solution by using a
randomized rounding technique.

• Greedy Scheme (GS): Traversing all users in a
certain order, GS determines the way of service
placement and user allocation for each user, which
minimizes the total cost increase.
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Fig. 5. Gradually converged total cost and user-perceived
delay in testbed and simulation.
• All-service Scheme (AS): Assuming all the services

are placed at each edge server, AS first solves the
user allocation problem P2(Y) in polynomial time,
and then removes the services from the edge server
wherever there is no corresponding offloaded task.

• OPTimal Scheme (OPTS): OPTS offers a baseline as
it directly uses the MILP solver to solve P1.

7.2 Experiment Results
Cost Reduction and User-perceived Delay: We first test
the effectiveness of LOCUS and derive the cost reduction
versus iterations in Fig. 5(a). It shows that with the
increase of iterations, the total cost in the task offloading
system drops gradually. For the case of 2 edge servers
and 4 services, we observe that the total cost needs
more time to converge. However, when there are fewer
edge servers and services, the cost easily becomes stable.
Furthermore, we notion that the converged cost can be
closer to the optimum when the numbers of edge servers
and services are larger since there are more chances for
local-search operations to reduce the total cost. For both
of the two cases in Fig. 5(a), the total cost can converge
to a point which is near to the optimum, and it can be
approximately guaranteed by Theorem 1.

After that, we compare the user-perceived delay in the
testbed and simulation with different workloads of tasks,
as shown in Fig. 5(b). We observe that the measured
user-perceived delay in the testbed is slightly higher
than that in the simulation because we ignore the MAC-
level/queuing delays and the instability of the edge
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Fig. 6. Changes in total cost with varying workloads of
tasks, delay requirements and workload upper limits.
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Fig. 8. Time taken by different schemes with varying numbers of users, servers and services.

server computing capacity in our model, which can be
captured in the testbed-based experiment.

Comparisons in Total Cost: We then compare the total
cost induced in some video-related services (e.g., vehi-
cle counting, pedestrian counting and object detection)
and text-related services (e.g., word counting and word
finding) with different estimated workloads of tasks. As
shown in Fig. 6(a), we notice that the variance of cost in
some video-related services is significantly greater than
that in the text-related services because the video content
usually changes a lot, which will result in the edge server
usage cost varying much more.

We study the changes in total cost with varying work-
loads of tasks, delay requirements and workload upper
limits in the task offloading system. In Fig. 6(b), when
we increase the average workload of tasks, the total costs
obtained with the 5 schemes also rise, due to the fact
that more task workloads lead to higher server usage
cost and energy consumption cost. Furthermore, as there
are workload upper limits for each edge server, more
servers are needed to complete the increased workloads,
which results in higher service placement cost. As shown
in Fig. 6(c), when the average delay requirement is
increased, the total costs obtained with the 5 schemes are
reduced since edge users have more edge server choices
to make the total cost smaller. Besides, when the delay
requirements are relaxed to a certain extent, the total
cost remains almost constant. Fig. 6(d) demonstrates
the impacts of varying workload upper limit average
on total cost. When the workload upper limit average
is varying from 700 Gcycles to 1100 Gcycles, the total
cost goes down, because increased workload upper limit
contributes to completing more workload on each edge
server, which saves the cost of placing extra services on
other edge servers. In Section 6, it is proven that our
proposed algorithm LOCUS achieves an approximation
ratio. Actually, as shown in the experiment results, the

total cost gap between LOCUS and the optimal scheme
OPTS is very small. Additionally, in terms of total cost,
our design LOCUS always performs much better than
the other methods RRS, GS and AS.

Comparisons in Cost Components: We next focus on
the three components (i.e., service placement cost, server
usage cost and energy consumption cost) in total cost
with varying numbers of users, servers and services.
From Fig. 7, we can see that server placement cost is the
main contributor to the total cost obtained with RRS and
AS. For scheme RRS, each service placement decision
variable ym,s is first relaxed to continuous variable in
[0, 1], thus it helps to select the better user allocation
decisions which lead to lower server usage and energy
consumption cost. Similarly, before AS solves the con-
sidered problem, it assumes all services are placed at
each server. Thus, better user allocation decisions can
be determined to minimize the server usage and energy
consumption cost. Furthermore, the total cost of LOCUS
and OPTS are lower since they both optimize the trade-
off among service placement cost, server usage cost and
energy consumption cost via the joint optimization of
service placement and user allocation.

Comparisons in Calculation Time: We finally com-
pare the time taken by different schemes to calculate
the service placement and user allocation decisions with
varying numbers of users, servers and services. As
demonstrated in Fig. 8, when we increase the numbers
of users, edge servers and services, more calculation
time is needed to tackle the considered problem using
RRS, OPTS and LOCUS. Moreover, it can be clearly
seen that the calculation time OPTS takes to obtain the
service placement and user allocation decisions grows
the fastest, because it needs to find the optimal overall
decision in the solution space of exponential size. For
example, as shown in Fig. 8(b), when the user number
varies from 12 to 40, the added calculation time of
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OPTS is nearly 104 seconds, while the added calculation
time of LOCUS is only hundreds of seconds. Therefore,
our proposed algorithm LOCUS has good stability and
scalability compared with others in different scenarios.

8 CONCLUSION AND FUTURE WORK

In this paper, we investigate the user-perceived delay-
aware service placement and user allocation problem in
edge environment. We present the modeling of MEC-
enabled network, user-perceived delay and total cost of
task offloading system, based on which we formulate the
user-perceived delay-aware service placement and user
allocation problem as a mixed integer linear program-
ming problem which aims at minimizing the total cost
of task offloading system. Due to the intractability of
our considered problem, we design a polynomial-time
local-search based algorithm LOCUS which achieves
provable guaranteed performance. We finally compare
our proposed algorithm with existing methods and show
the good performance of LOCUS through experiments.
However, there are still a few limitations in our work
which needs future research effort. First, more accurate
system model design (e.g., considering the delay of task
queuing at the edge server) would help to determine
the better service placement and user allocation decision.
Second, applying our proposed algorithm to dynamic
service placement requires extra handling of the service
placement decisions in different time slots.
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